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Abstract

Domain-informed Language Models for Process Systems Engineering

Vipul Mann

Process systems engineering (PSE) involves a systems-level approach to solving prob-

lems in chemical engineering related to process modeling, design, control, and optimization

and involves modeling interactions between various systems (and subsystems) governing the

process. This requires using a combination of mathematical methods, physical intuition,

and recently machine learning techniques. Recently, language models have seen tremendous

advances due to new and more efficient model architectures (such as transformers), com-

puting power, and large volumes of training data. Many of these language models could be

appropriately adapted to solve several PSE-related problems. However, language models are

inherently complex and are often characterized by several million parameters, which could

only be trained efficiently in data-rich areas, unlike PSE. Moreover, PSE is characterized by

decades of rich process knowledge that must be utilized during model training to avoid mis-

match between process knowledge and data-driven language models. This thesis presents a

framework for building domain-informed language models for several central problems in PSE

spanning multiple scales. Specifically, the frameworks presented include molecular property

prediction, forward and retrosynthesis reaction outcome prediction, chemical flowsheet repre-

sentation and generation, pharmaceutical information extraction, and reaction classification.

Domain knowledge is integrated with language models using custom model architectures,

standard and custom-built ontologies, linguistics-inspired chemistry and process flowsheet

grammar, adapted problem formulations, graph theory techniques, and so on. This thesis

is intended to provide a path for future developments of domain-informed language models

in process systems engineering that respect domain knowledge, but leverage their computa-

tional advantages.
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Chapter 1: Introduction

Process systems engineering (PSE) is a subdomain in chemical engineering that involves

applying systems thinking principles for process modeling, design, and control. Systems

thinking focuses on the design, integration, and management of complex systems, where there

is often a need to study the relationships and interactions within a system as a whole rather

than modeling individual components in isolation. Process systems engineering, therefore,

involves the formulation of processing engineering related problems from a systems thinking

standpoint, which either results in a precise mathematical formulation that could be solved

using algorithms based on the mathematical structure of the problem, or formulation based

on physical intuition, as defined by Sargent (1983) [1].

The scope of PSE is quite broad and traditionally involves problems related to process

synthesis, design, analysis, operations, control, optimization, and so on. With increasing

development and adoption of computer-aided, data-driven methods in various engineering

domains, the scope of PSE has expanded further to areas such as pharmaceutical product

discovery, chemical product design, integration of product-process design, techno-economic

and sustainability-focused design, and many more [2, 3]. Gani et al. [4] provides a multi-

layered view of PSE with an inner core layer comprising process-product-related activities,

the middle layer involving resource-efficiency-related activities, and an outer layer focusing

on societal sustainability factors.

For solving a wide range of problems on multiple scales, the PSE community has been

developing and using advanced numerical methods such as optimization, multivariate anal-

ysis, uncertainty quantification, integer programming, and dynamic programming for a long

time. Recently, there has been a surge in the use of machine learning and deep learning

approaches to solve these problems due to their advantages over traditional mathematical
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formulations, especially in terms of computational efficiency. AI and ML-based methods have

been developed for problems in computer-aided molecular design (CAMD), reaction network

generation and synthesis planning, ontology-based material informatics, process optimiza-

tion, pharmaceutical drug development and discovery, and many more. Within the area of

machine learning, language models are an emerging class of models that were originally pro-

posed for modeling natural language, where the primary goal is to build data-driven models

for natural language-oriented tasks such as machine translation, word representation, text

summarization, sentiment classification, and other text data-related problems. Language

models offer a new alternative mathematical formulation for solving several related problems

in PSE from product development to process synthesis and optimization after appropriate

adaptations, and thus have started to appear in the PSE domain.

However, the advantages of language models in their current form could only be realized

if abundant training data are available since they are often characterized by parameters

on the order of several millions. However, PSE traditionally being not a big-data field

compared to natural language domain where terabytes of training data is readily available,

efficiently training such language models becomes challenging. In addition, language models

are typically purely data-driven in nature, suitable for domains like computer science where

a physics and chemistry-based understanding of the underlying systems does not exist. On

the other hand, this is not the case with PSE and other engineering domains, where extensive

domain knowledge is readily available. Thus, for the success and wider adoption of language

models in PSE, it is imperative that they not be developed in isolation, leading to systems

that are disconnected from theory.

In this thesis, in order to integrate prior domain knowledge with language models, domain-

informed language modeling frameworks are developed for solving a range of multiscale prob-

lems in process systems engineering. Such domain-informed language models are demon-

strated for problems including molecular property prediction, computer-aided reaction syn-

thesis, process flowsheet representation and generation, pharmaceutical information extrac-
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tion, and the study of the network of organic chemistry. The thesis comprises a total of 6

chapters. Chapter 2 presents a molecular property prediction framework that involves learn-

ing dense vector representations for molecules using a word2vec-like framework called gram-

mar2vec that is based on the SMILES grammar. These representations are used to build inter-

pretable machine learning models for prediction of physical properties such as boiling point

and critical temperatures. Chapter 3 presents chemistry-informed transformer models for

efficiently solving forward and retrosynthesis reaction prediction problems using chemistry-

informed representations and chemistry-adapted transformer architecture with nearly state-

of-the-art performance. The forward and retrosynthesis reaction prediction problems are

formulated as sequence-to-sequence and tree-to-sequence modeling problems, respectively.

Chapter 4 presents a novel hierarchical framework for chemical flowsheet representation at

three levels with a base level using text-based, hypergraph-based, and hypergraph-connected

flowsheet representations based on process ontology. A novel chemical flowsheet grammar

inspired by linguistics that could be used for consistent and accurate process flowsheet syn-

thesis is also developed. Chapter 5 presents an approach named schema-based unsupervised

semantic information extraction (or SUSIE) that automatically extracts relevant informa-

tion from pharmaceutical documents and creates knowledge graphs that represent important

information semantically. This framework has been tested on public and proprietary docu-

ments on a variety of tasks such as entity recognition, relation extraction, text summarization,

and efficient search. Chapter 6 presents a study of the network of organic chemistry from

a graph-theoretic standpoint, where reactions are represented as hypergraphs. A study on

the time-evolution of network statistics and its applications in reaction classification is pre-

sented. Finally, a summary of the thesis, concluding remarks, and perspective on the future

directions appear in the Epilogue.
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Chapter 2: Molecular Property Prediction

Thermodynamic properties are crucial for efficient process design, optimization, control,

and monitoring, the latter two being extremely important in safety-critical conditions. A

reliable (and often preferable) means of acquiring properties is measuring them through

controlled experimentation that achieves the desired level of accuracy and precision. However,

with increasing complexity and number of compounds synthesized at a rapid pace, along with

a combinatorially large number of possible mixtures, it is nearly impractical to perform costly

and time-consuming experiments for all of them. An alternative solution for mitigating this

issue is to build fairly accurate data-driven models that could be used to estimate such

properties. As argued by Venkatasubramanian and Mann [5], the most useful data-driven

methods are those that combine domain knowledge (in the form of symbolic information)

with numeric machine learning.

Quantitative structure-activity/property relationships (QSAR/QSPR) methods utilize

the correlations between molecular properties and their structural descriptors for data-driven

property estimation. Although, these methods are statistical in nature and are characterized

by difficult mathematical formulations and property-specific nature that limited their wider

generalization capabilities [6], the commonly used Group Contribution (GC)-based methods,

which could be regarded as a special class of QSAR/QSPR methods, are simple, easy to

use and predictive in nature. The underlying assumption in group contribution methods is

that the property of a compound is a function of its molecular structure and the property

can be determined by summing the contributions of the groups representing the molecule

for a specific property. GC-based methods have limitations from the standpoint of accuracy,

applicability to complex molecular structures, isomer distinction, and so on [7].

Recently, machine learning (ML) methods have emerged as powerful alternative for tack-
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ling the thermodynamic property estimation problem. These methods generally use artificial

neural networks, support vector regression, or deep learning approaches involving autoen-

coders, variational autoencoders, graph neural networks, and so on. Such methods have

been reportedly used for predicting a wide range of properties such as CO2 solubility, den-

sity and viscosity of potassium lysinate and the mixed solutions with monoethanolamine [8],

predicting standard enthalpies of formation for hydrocarbons [9], density and viscosity of bio-

fuel compounds [10], and and, GC-based machine learning modeling of 25 pure component

properties of organic compounds [11].

One of the important steps in building such data-driven ML models is using an appro-

priate representation for molecules that captures their underlying structural and chemical

characteristics. This task could either be performed manually based on domain knowledge

by using expert-curated features for each property individually, or performed automatically

in a latent space, referred to as representation learning [12]. Such representations (or molec-

ular features) are fed to the data-driven models with the target variable as the property of

interest for a molecule. In the area of chemistry and drug discovery, the common representa-

tions for molecules are Morgan fingerprints [13], SMILES strings [14], molecular graphs [15],

and SMILES grammar [16]. At the present, there is no consensus on which molecular rep-

resentation is most suited for machine learning-based property prediction problems, making

this an interesting field of research.

A Grammar2vec framework has been developed to address such issues related to molecular

representation, which generates dense vector representations of molecules using the grammar

rules defining SMILES representations to develop ML-based property estimation models. The

performance of these models is evaluated in terms of SMILES and SMILES grammar-based

representation of molecules. Their performance is benchmarked on two thermodynamic prop-

erties – normal boiling point (𝑇𝑏) and critical temperature (𝑇𝑐). To ensure a fair comparison

(fixing the number of features in each representation), the natural language analogy is in-

voked, and molecules are looked at as sentences, and the underlying atomic units are seen as
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words to generate their fixed-size vector representations. These vector representations are the

same for each molecule (irrespective of the property being predicted), which are then used

to build separate ML-based regression models. In addition, a systematic study is performed

using Shapley values [17] to understand the feature importance and prune the model fur-

ther, giving rise to a simpler and relatively interpretable model. This approach of generating

dense vector representations of molecules using the grammar rules underlying the SMILES

representation is referred to as the Grammar2vec framework.

2.1 Problem statement and objectives

The thermodynamic property estimation problem is formulated as a regression task in

which the objective is to create a machine learning-based regression model between the

regressors and the target variable as,

𝑦𝑖 = f (xi,β) + 𝑒𝑖 (2.1)

where (for the 𝑖𝑡ℎ molecule) the target variable 𝑦𝑖 is the predicted thermodynamic property of

interest; xi is the vector representation of the molecule and is of dimension 𝑚×1; β is a vector

of regression coefficients (with appropriate dimensions depending on the model-form) that is

estimated; and 𝑒𝑖 is the noise in the prediction that could be attributed to the measurement

errors in the training data and/or the modeling inaccuracies. The former could be inferred

by performing an uncertainty analysis as demonstrated for GC-models in [18].

Based on Equation 2.1 above, the two important aspects for estimating the target value

𝑦𝑖 accurately are – choosing an appropriate functional transformation f (.) and a using rich

molecular representation xi. To model the former, a support vector regression (SVR) model

with a radial basis function (RBF) kernel is used, while for the latter, a rich, property-agnostic

molecular representation xi is generated using the proposed Grammar2vec framework. In

addition, since our objective is to build interpretable machine learning models, the feature
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importance and contribution towards the predictions are analyzed by computing Shapley

values. This information is used to prune the model and simplify it as much as possible while

retaining a similar performance, thus giving rise to a relatively simpler yet powerful model

architecture. The kernel SVR model, the Grammar2vec framework, and Shapley values are

described in detail in Sections 2.2.3, 2.2.2, and 2.2.4 respectively. An overview of the proposed

algorithmic framework is presented in Figure 2.1.

Figure 2.1: An overview of our algorithmic framework used for the property prediction
problem.

For the example molecule 2-Napthyl methylcarbamate, the two different representations

based on the SMILES and SMILES grammar representations are indicated in Figure 2.1.

These representations are tokenized (split into individual characters) and passed to two sep-

arate Grammar2vec models as ‘words’ that learns their respective 32-dimensional (dense)
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vector representations which are then transformed to a single 32-dimensional dense vector

representing the entire molecule by performing element-wise averaging. These 32 features are

then used in the kernel SVR model to estimate the property of interest (say 𝑇𝑐). While this

model could directly be used for property prediction, the model is simplified by first com-

puting the Shapley values to understand the relative importance of the 32 features towards

the regression task and then prune the model to drop the relatively unimportant features.

The final, simplified model is then used for the property prediction task. The equations and

transformations required at each stage are indicated in Figure 2.1. The following sections

provide details on each of these modules.

2.2 Methods underlying grammar2vec-based property estimation

In this section, a brief overview of the various methods used in our work at different

stages in the algorithmic framework described in Figure 2.1 is provided. These methods in-

clude the different molecular representations, the natural language analogy and the proposed

Grammar2vec framework, the kernel SVR model used for estimating the properties, and

the Shapley values approach used for computing feature importance and performing model

pruning.

2.2.1 Molecular representations: SMILES and SMILES grammar

The SMILES representation [14] is commonly used in deep-learning approaches includ-

ing drug discovery, because of their ability to encode molecular structural information as

text using short ASCII strings. Several approaches that have utilized this representations

in frameworks adapted from natural language process include the SMILES transformer [19],

Mol2vec [20] for generating molecular representations inspired from [21], and SMILES2vec

[22] for chemical property estimation using deep recurrent neural networks, and several other

works on property estimation [23, 24, 25, 26]. The major shortcoming of the SMILES repre-

sentation, however, is their lack of explicit incorporation of the entire molecular structure of
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the molecule (including the 3D structure and stereochemistry). It is often assumed (incor-

rectly) that the machine learning model would discover the underlying relationships between

the SMILES characters, resultig in information loss and consequently suboptimal model per-

formance. This issue is addressed to a large extent by utilizing the underlying SMILES

grammar production rules.

The SMILES grammar specifies the underlying production rules that are required to

generate the SMILES string of a given molecule. These productions rules are much more

detailed and richer when compared to individual, purely character-based SMILES characters

(or tokens). The SMILES grammar is similar to the context-free grammar (CFG) commonly

used in the area of natural language processing, first formalized by Chomsky [27]. A CFG

is a finite collection of recursive rules (or productions) that defines the set of all well-formed

sentences in a language. Formally, a CFG is a 4-tuple 𝐺 = (𝑉, Σ, 𝑅, 𝑆), where 𝑉 is a finite

non-empty set of non-terminal symbols, Σ is a finite set of terminal symbols, 𝑅 is a finite

non-empty set of rules, and 𝑆 is a designated start symbol. Each rule has a left-hand side

(a single non-terminal) and a right-hand side (a sequence of one or more non-terminal or

terminal symbols). A CFG can also be deduced for SMILES strings and was used for molecule

optimization in [16] in which the parse tree is used as a representation for the molecules [28].

A representative subset of the SMILES grammar is shown in Figure 2.1 and the set of rules

required to generate the SMILES string for propene (CC=C) is shown in Figure 2.2 in the

form of a parse tree. A SMILES grammar-based representation could be constructed from the

grammar parse tree by extracting the sequence of production rules in a depth-first strategy

as indicated in the caption of Figure 2.2.

9



Table 2.1: A subset of the SMILES grammar productions. The complete SMILES grammar
used in this work is presented in the Appendix A.

S.No Production rules

1 SMILES −→ CHAIN

2 CHAIN −→ CHAIN BRANCHED_ATOM

3 CHAIN −→ CHAIN BOND BRANCHED_ATOM

4 CHAIN −→ BRANCHED_ATOM

5 BRANCHED_ATOM −→ ATOM RINGBOND

6 BRANCHED_ATOM −→ ATOM

7 BRANCHED_ATOM −→ ATOM BB

8 BRANCHED_ATOM −→ ATOM RB

9 BB −→ BRANCH

10 RB −→ RINGBOND

11 BRANCH −→ ( CHAIN )

12 RINGBOND −→ DIGIT

13 BOND −→ =

14 ATOM −→ AROMATIC_ORGANIC

15 ATOM −→ ALIPHATIC_ORGANIC

16 AROMATIC_ORGANIC −→ c

17 ALIPHATIC_ORGANIC −→ C

18 ALIPHATIC_ORGANIC −→ O
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Figure 2.2: The parse-tree obtained for propene (SMILES representation: CC=C) using SMILES
grammar productions in Table 3.1. The productions are extracted from the parse tree in a depth-
first manner, resulting in the grammar representation for propene to be 1, 3, 2, 4, 6, 15, 17, 6, 15,
17, 13, 6, 15, 17

The SMILES grammar-based representations incorporate chemical and structural infor-

mation about molecules, which cannot be done with purely character-based SMILES strings,

and are shown to be superior from an information-theoretic standpoint [29]. The grammar

rules, that often correspond to underlying structural chemistry of molecules, explicitly en-

code that information in the representation making them much more richer as compared

to SMILES strings. The complete SMILES grammar used in our work is presented in the

Appendix A. These grammar rules are transformer into dense, numeric vectors using the

Grammar2vec framework as described in the next section.

2.2.2 Grammar2vec framework

Natural language processing techniques involve transforming text into its equivalent nu-

meric representation that preserves the underlying properties (context, meaning, structure)

to the maximum possible extent. One approach to achieve this is generating word embed-

dings that learn dense vector representations of text (or words) using neural networks by
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preserving the contextual information of words in a corpus. Word2vec [21] is one of the

most commonly used methods used to generate word embeddings and is at the core of the

Grammar2vec framework. It encodes words in a high dimensional vector space such that

words with higher semantic similarity are closer in the vector space. The Word2vec model

can be trained using two different approaches – skip-gram and a continuous bag of words

(CBOW). The skip-gram approach involves using the current word to predict its contextual

words, whereas the CBOW approach involves predicting the current word based on the con-

text words. In our work, the CBOW approach is used because of its better performance and

faster computation.

Figure 2.3: An overview of the proposed Grammar2vec framework for generating dense,
numeric vector representation of molecules utilizing the underlying structural information
in the form of SMILES grammar productions. The grammar-based descriptors are fed to
machine learning models as features (or regressors).

The steps involving the Grammar2vec framework are highlighted in Figure 2.3. Gram-

mar2vec generates vector embeddings of molecules by considering grammar-representations of
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molecules as sentences and the individual grammar rules as separate words. For instance, con-

sider the compound 2-Naphthyl methylcarbamate with SMILES string CNC(=O)Oc1ccc2ccccc2c1.

The ‘molecular sentence’ based on the grammar representation is generated by using the

SMILES grammar representation as

‘1’ ‘75’ ‘75’ ‘75’ . . . ‘74’ ‘64’ ‘3’ . . . ‘3’ ‘7’ ‘66’ ‘3’ ‘6’ ‘71’ . . . ‘39’ ‘81’

where each production rule is equivalent to the ‘molecular word’. Treating these represen-

tations as sentences and the individual constituent units as words, the Word2Vec model is

trained using the gensim package in Python [30] and learn the vector representations of each

of these molecular words. The vector representation for the entire molecule (molecular sen-

tence) is obtained by averaging out the word embeddings learned across all the constituent

words, a standard approach for learning sentence embeddings in natural language processing.

A similar approach involving purely character-based SMILES strings (without grammar) is

the idea behind SMILES2vec [22]. Similarly, [31] used Word2Vec model with bond-strings

as input to generate molecular descriptors that were used for property estimation in a deep

learning framework.

Since the performance of the Grammar2vec representation is compared against the SMILES

strings-based dense representation, two separate Word2vec models are trained on a corpus

of nearly ∼ 15, 000 molecules for 10, 000 iterations to acquire dense vector representations of

size 32 from molecular sentences.

Remark 1: Note that the actual characters in the molecular sentences do not matter;

instead their relative position and the context words are important while learning their word

embeddings. Therefore, the individual tokens could be replaced to any arbitrary string as

long as they map to the same word uniquely.

Remark 2: Just like the group contribution (GC)-based approaches, if a molecule is not

present in the dataset, its vector representation could still be generated since the dense

vectors are obtained using models trained on the individual bits in the molecular sentences
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comprising SMILES grammar rules or the SMILES characters. Therefore, any new molecule

could be represented as long as these individual bits that it is composed of are seen by the

model during training (a fair assumption of fixed vocabulary size, as in natural language).

In fact, in our test set, there were molecules that were never seen by the model during the

training stage.

2.2.3 Support vector regression for property estimation

To estimate the thermodynamic properties of molecules, a kernel support vector regression

(SVR) model [32] is used to build a regression model between the molecular descriptors and

the correspond property values. The kernel SVR framework is chosen due to its ability to

model complex, non-linear interactions between features even under small sample conditions

and generalizability to out-of-sample datasets. The general idea behind the kernel SVR

method is to first map the original data into a high dimensional space using kernels, and

then find an optimal decision boundary or separating hyperplane by minimizing the error

or the distance between the observed and the predicted values by formulating this as a

constrained optimization problem.

For the simple linear SVR case (the non linear SVR described in subsequent paragraphs

is used), the regression function f (.) in Equation 2.1 is assumed to be linear and is defined

as,

f (xi,β) = xi
𝑇β + 𝑏 (2.2)

where 𝑏 is an additional coefficient that corresponds to the bias in the predictions, xi is a

numeric vector representing a molecule, and β is a vector of unknowns that need to be esti-

mated. The objective is to minimize the norm of the coefficients β such that the residuals

are within a given limit 𝜖 . Slack variables are introduced for each point in the constraints

equation to ensure the constraints are satisfied and a solution exists for the constrained opti-

mization problem (known as soft-margin SVR). The primal formulation of the optimization
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problem is thus given by,

min
β

| |β | |2 + 𝐶
𝑁∑︁
𝑖

(Z𝑖 + Z∗𝑖 ) (2.3)

subject to,

𝑦𝑖 − (xi𝑇β + 𝑏) ≤ 𝜖 + Z𝑖, (xi𝑇β + 𝑏) − 𝑦𝑖 ≤ 𝜖 + Z∗𝑖

where, 𝐶 is a parameter that controls the penalty imposed on points that lie outside the 𝜖

margin, and Z𝑖 and Z∗
𝑖

are non-negative slack variables that define the maximum tolerable

error without imposing a penalty on the regression errors. The Lagrange dual formulation

for this problem, that is computationally easier to solve, is given by,

min
_

1

2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1

(_ 𝑗 − _∗𝑗 ) (_𝑘 − _∗𝑘 ) (xj
𝑇xk) + 𝜖 (_ 𝑗 + _∗𝑗 ) −

𝑁∑︁
𝑗=1

𝑦 𝑗 (_ 𝑗 − _∗𝑗 ) (2.4)

subject to,

𝑁∑︁
𝑗=1

(_ 𝑗 − _∗𝑗 ) = 0, 0 ≤ _ 𝑗 ≤ 𝐶, 0 ≤ _∗𝑗 ≤ 𝐶

where _ 𝑗 and _𝑘 are non-negative Lagrange multipliers. The regressed (predicted) values, 𝑦𝑖,

for an input xi, is given by

𝑦𝑖 =

𝑁∑︁
𝑗=1

(_ 𝑗 − _∗𝑗 ) (xj𝑇xi) + 𝑏 (2.5)

Instead of using the linear assumption for the regression function f (.) in Equation 2.1, a

kernel function is used that transforms the data into higher dimensions to learn a non-linear

function in the original space. This is done by replacing the inner products or dot products

in the linear SVR formulation above with kernels. The radial basis function (RBF) kernel

given by,

𝐾 (𝑥 𝑗 , 𝑥𝑘 ) = 𝑒𝑥𝑝(−𝛾 | |𝑥 𝑗 − 𝑥𝑘 | |2) (2.6)

15



where the parameter 𝛾 controls the width of the kernel is used. The Kernel matrix is an 𝑛×𝑛

matrix where each element corresponds to the inner product of the transformed data points

in higher dimensions. Replacing the inner products with the RBF kernel function, the dual

problem thus becomes,

min
_

1

2

𝑁∑︁
𝑗=1

𝑁∑︁
𝑘=1

(_ 𝑗 − _∗𝑗 ) (_𝑘 − _∗𝑘 )𝐾 (𝑥 𝑗 , 𝑥𝑘 ) + 𝜖 (_ 𝑗 + _∗𝑗 ) −
𝑁∑︁
𝑗=1

𝑦 𝑗 (_ 𝑗 − _∗𝑗 ) (2.7)

subject to,

𝑁∑︁
𝑖=1

(_ 𝑗 − _∗𝑗 ) = 0, 0 ≤ _ 𝑗 ≤ 𝐶, 0 ≤ _∗𝑗 ≤ 𝐶

The regressed (predicted) values, 𝑦𝑖, for an input xi, is given by

𝑦𝑖 =

𝑁∑︁
𝑗=1

(_ 𝑗 − _∗𝑗 ) 𝑒𝑥𝑝(−𝛾 | |x 𝑗 − x𝑖 | |2) + 𝑏 (2.8)

Therefore, Equations 2.7 and 2.8 characterize our trained non-parametric regression model,

and the regressed values for thermodynamic properties of a give molecule could be estimated

using Equation 2.8 for a given molecule represented as xi.

2.2.4 Interpretable ML using Shapley values

To improve the interpretability of the kernel SVR model used in the regression task,

understanding the feature importances and their contribution towards the estimated values

is of interest to us. Such analysis is necessitated due to the inherent complexity of the

kernel SVR model, primarily due to the high-dimensional feature transformation using the

radial basis function (RBF) kernel. This renders the straightforward evaluation of the support

vectors for understanding the feature importance nearly impossible. Shapley values, a concept

from cooperative game theory used to compute the contribution of each player to the final

payout, is therefore used to understand the feature importances for the property estimation
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task [33].

Shapley values are a measure of the average marginal contribution of a feature across

all possible coalitions (or feature combinations). To quantify the importance of a given

feature, different feature coalitions are simulated and the predicted value for the different

contributions are averaged and subtracted from the predicted value with the given feature

in the coalition. This computation is performed for all possible coalitions, and the Shapley

value is the average of all the marginal contributions to all possible coalitions. Formally, the

Shapley value for a feature 𝑗 is defined as,

𝜙 𝑗 =
1

𝑀

𝑀∑︁
𝑚=1

( 𝑓 (𝑥𝑚+ 𝑗 ) − 𝑓 (𝑥𝑚− 𝑗 )) (2.9)

where 𝑓 (𝑥𝑚+ 𝑗 ) is the prediction for 𝑥 with a random number of feature values replaced by

feature values from a random data point 𝑧 except for the respective value of feature 𝑗 ; 𝑥𝑚+ 𝑗 is

identical to 𝑥𝑚− 𝑗 except that the value 𝑥𝑚
𝑗

is taken from the random sample 𝑧 in 𝑥𝑚− 𝑗 ; features

on the left of 𝑥 𝑗 have values from the original observations and those on the right of 𝑥 𝑗 take

their values from a random instance; and 𝑀 is the number of instances generated. This

procedure is repeated 𝑀 times for all the features and feature importances are computed.

These concepts have been applied in various areas including machine learning for un-

derstanding ML models [34, 35, 36, 37]. Following a similar approach, Shapley values were

computed for our model and inferences derived from them were also used to prune the model

by retaining only the important features contributing the most to the model performance

as depicted in the algorithmic framework in Figure 2.1. The Shapley values were computed

using the SHAP package in Python [33].

2.3 Dataset and model training

In this section, a detailed overview of the dataset and the model training aspects is

provided. Specifically, a description of the dataset for the two properties of interest is initially
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presented, followed by an explanation of the model training and hyperparameter tuning

aspects for the kernel SVR models. Additionally, a visual comparison of the learned feature

vectors for the dense vector embeddings of the molecular words obtained using Grammar2vec

is included.

2.3.1 Dataset description

The dataset used in our work is based on data used in the recent work by Alshehri et

al. [11] for predicting normal boiling point (𝑇𝑏) and critical temperature (𝑇𝑐). The dataset

contains experimentally measured values of these properties with molecules represented as

SMILES strings along with their groups-based representations indicating the various first-

order, second-order, and third-order functional groups and the number of times they are

present in each molecule. There are 200 first-order groups, 150 second-order groups, and 74

third-order groups, and hence, a total of 424 different functional groups. The data on normal

boiling point for molecules consists of 3510 different pure compounds (molecules) whereas

the data for critical temperature is much smaller with just 858 molecules. These molecules

were further preprocessed to remove molecules that either could not be processed by RDKit

or were not parsed by the SMILES grammar. The resulting final data had 3488 and 800

molecules for 𝑇𝑏 and 𝑇𝑐, respectively.

Though the developed framework is applicable for predicting any thermodynamic property

of a molecule as long as there is enough training data available, models were built only for

predicting 𝑇𝑏 and 𝑇𝑐 because these two properties provide enough variety of challenges that

are generally encountered – modeling difficulty, limited data availability, and performance on

out-of-sample examples. Moreover, limiting ourselves to just two (but important) properties

would help in performing a detailed analysis of the underlying models and the molecular

representations trained to make them more interpretable.
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2.3.2 Grammar2vec and regression model hyperparameters

As explained in Section 2.2.2, the Grammar2vec model was used to learn dense vector

representations for molecules using SMILES grammar and Word2vec using SMILES strings.

Vector embeddings of molecules with different sizes were trained, namely 8, 16, 32, and 64

(resulting in the molecular representations x8×1, x16×1, x32×1, and x64×1, respectively), and

evaluated the performance of learned representation of various sizes on a validation set in the

property prediction task. The best model performance was achieved using an embedding of

size 32, and hence, the size of the vector representations was fixed at 32 for performing final

model training and detailed model analysis. These 32-dimensional dense feature vectors x32×1

were used in the support vector regression (SVR) framework for training separate regression

models for estimating 𝑇𝑏 and 𝑇𝑐.

To perform modeling, the dataset was split into training and test sets using a 95/5 split

where the training set is used for model building and the test set is used only for reporting

model performance statistics. The training set is further subdivided to perform 5-fold cross-

validation to search for optimal hyperparameter values using a randomized search in the

following range: 𝐶 : 500 − 50000, 𝛾 : 0.01 − 0.2, and 𝜖 : 0.1 − 1. The hyperparameters are

tuned separately for all the 4 models (using models trained on two separate representations

each for 𝑇𝑏 and 𝑇𝑐 estimation). Therefore, each property prediction model is characterized

by three hyperparameters that need to be tuned using the given dataset.

Remark 3: Since Grammar2vec is an unsupervised learning technique, the word embed-

ding models were trained on the entire dataset containing nearly ∼ 15k molecules. One may

choose to train this model on an even bigger dataset with millions of molecules such as the

Zinc dataset or the USPTO reactions dataset.

2.3.3 Learned molecular representations

Since a machine learning model is being used for the regression task and using a 32-

dimensional dense vector representation for molecules as input to the regression model, each
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individual feature should capture different aspects of a molecule. In other words, each feature

should ideally focus on distinct aspects of a molecule, and that should be unique to a given

feature. While there must be some overlap between what each feature captures, an ideal, rich

representation would minimize this overlap (or similarities) across features. The similarity

or dissimilarity across features is qualitatively assessed by examining their distribution plots

(histograms). The greater the disparity between the feature distributions, the more extensive

the representation is expected to be. It is hypothesized that a rich representation would be

one that encapsulates the most concentrated information within each feature.

(a) 𝑇𝑏 grammar (b) 𝑇𝑐 grammar

(c) 𝑇𝑏 SMILES (d) 𝑇𝑐 SMILES

Figure 2.4: Histograms for the 32 features based on the SMILES grammar and SMILES
representations for molecules in the 𝑇𝑏 and 𝑇𝑐 datasets. The vertical axis corresponds to the
frequency and the horizontal axis represents the actual numeric values of the feature vector
elements.

The histograms for the dense vector-based representations for molecules learned using the

Grammar2vec and Word2vec model (for SMILES) are shown in Figure 2.4. Histograms for

32-dimensional molecular representations obtained using SMILES grammar and SMILES are
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plotted. There are 32 shades of colors in each sub-figure and each of them corresponds to a

different feature.

2.4 Results

Detailed results obtained using our algorithmic framework are presented in this section.

An information-theoretic analysis is first presented in Section 2.4.1 for comparing the various

learned representations in an ML-independent manner that is rooted in fundamental analysis

of uncertainty and conditional information gain associated with the representations. The

detailed regression statistics, error analysis, and benchmarking the performance againts group

contributions (GC)-based methods are presented in Section 2.4.2. The feature importance

and subsequent model pruning results and analysis based on Shapley values are in Section

2.4.3 and Section 2.4.4, respectively.

2.4.1 Information theory

In representation learning, it is important to preserve as much information about the un-

derlying entity as possible, and typically, the representations that are richer and have higher

information perform well when used in machine learning frameworks [29]. Representations

are important because they guide ML models in discovering the underlying, hidden patterns

much more easily if a richer representation is used, as opposed to an obscure, difficult to in-

terpret representation. We, therefore, turn to information theory since it offers a quantitative

approach for quantifying the amount of information associated with a given communication

channel [38] that could be adapted for chemical representations [29].

Two central concepts in information theory are the Shannon entropy and the conditional

entropy (or information gain). Shannon entropy measures the amount of uncertainty associ-

ated with a given signal in terms of bits of information and by definition, a higher uncertainty

translates to higher Shannon entropy or information capacity. Higher Shannon entropy points

towards the higher information-carrying capacity of a communication channel. On the other
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hand, conditional information gain or conditional entropy is a measure of the amount of un-

certainty associated with a signal when a part of it is known (hence, conditional). Typically, a

lower conditional information gain is desirable since it translates to a lower reconstruction er-

ror or loss. Figure 2.5 depicts these two concepts schematically along with the mathematical

equations for their computation.

Figure 2.5: Shannon entropy and conditional entropy depicted schematically on the SMILES
string representation for 2-Naphthyl methylcarbamate.

To utilize these concepts from information theory and analyze chemical representations

from this perspective, individual tokens (or characters) in various representations are stud-

ied as as random variables, and therefore, the molecular representation becomes a sequence

of random variables, 𝑋1, 𝑋2, . . . , 𝑋𝑛, where 𝑛 is the length of the representation for a given

molecule and 𝑋𝑖 could take any of the 𝑀 possible tokens defined in the vocabulary of the

representation. Tokens are the individual production rules for the SMILES grammar rep-

resentation, or characters for the SMILES representation. For instance, consider the same

compound 2-Naphthyl methylcarbamate. The different representations for this compound

along with the associated random variables or tokens are as follows:

• SMILES (‘𝐶’ ‘𝑁’ ‘𝐶’ ‘(’ ‘ = ’ ‘𝑂’ ‘)’ ‘𝑂’ ‘𝑐’ ‘1’ ‘𝑐’ . . . ‘𝑐’ ‘2’ ‘𝑐’ ‘1’):

𝑋𝑆𝑀𝐼𝐿𝐸𝑆
𝑖

∈ {‘𝐶’, ‘𝑁’, ‘(’, ‘ = ’, ‘𝑂’, ‘)’, ‘𝑐’, ‘1’, ‘2’}, where 𝑀 = 9, 𝑛 = 22

• Grammar (‘1’ ‘75’ ‘75’ ‘75’ . . . ‘3’ ‘7’ ‘66’ ‘3’ ‘6’ ‘71’ . . . ‘39’ ‘81’):

𝑋𝐺𝑟𝑎𝑚𝑚𝑎𝑟
𝑖

∈ {‘1’, ‘3’, ‘4’, ‘6’, ‘7’, ‘8’, ‘16’, ‘39’, ‘40’, ‘58’, ‘62’, ‘64’, ‘65’, ‘66’, ‘69’, ‘71’, ‘73’, ‘74’, ‘75’, ‘81’},

where 𝑀 = 20, 𝑛 = 77
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The Shannon entropy and conditional information gain are computed using the entire set

of nearly 15k molecules in the dataset since this is an unsupervised approach and does not

require the target property values. The required (conditional) probability distributions are

estimated for the two representations (SMILES, and grammar) based on the co-occurrence

matrices at different orders of conditioning (up to an order [ = 5). An order [ = 1 corresponds

to the Shannon entropy, order [ = 0 corresponds to Shannon entropy when the random

variables follow a uniform distribution (theoretical limit of information capacity), and orders

[ > 1 correspond to conditional entropy when [ − 1 preceding random variables are known

and is computed using the conditional entropy formula in Figure 2.5.

Figure 2.6: Information theoretic analysis results for the SMILES and grammar representa-
tions.

These results are presented in Figure 2.6 and it is observed that even though the theoret-

ical and observed Shannon entropy is higher for the grammar representation, the conditional

information gain drop significantly for the grammar representations for orders [ ≥ 2 and

remains much lower than that of the SMILES representations even at increasingly higher

orders. This points towards an important property of the grammar representations – when

prior information (about preceding tokens) is known for the grammar representations, the

amount of uncertainty associated with the other tokens for a molecular representation is re-

duced significantly which is not so much the case with SMILES representations. This could be
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attributed to the hierarchical structure (as shown in Figure 2.2) and the underlying grammar

that is much more efficient in eliminating the infeasible tokens than the other representations.

This property is extremely useful for methods like Word2vec (and consequently for Gram-

mar2vec) because they attempt to encode a given word based on the contextual/neighboring

words, and owing to the lower conditional information gain in the grammar representa-

tion, the contextual words are much more easier to infer. This property results in a lower

reconstruction loss in the Word2vec model at the training stage and therefore, better repre-

sentations. This richness and superiority of the grammar-based features should translate to

better performance on the regression task.

2.4.2 Property model development and application

After comparing the representations and establishing their relative richness in an ML-

independent manner, the results of the regression task for each of these representations are

now presented based on the kernel-SVR models (utilizing Equation 2.7). Based on a random

95/5 split, the 𝑇𝑏 dataset had 3313 data points in the training set and 175 data points in the

test set. On the other hand, the 𝑇𝑐 dataset had 760 data points in the training set and 40

data points in the test set. The scatter plots between the true values and the experimental

values for normal boiling points (𝑇𝑏) for molecules in the test set (unseen at the training

stage) are presented in Figure 2.7. The 𝑅2 values indicating the goodness of the predictions

on the training and the test set are indicated in the inset of each sub-figure.

It is observed that the grammar representations-based models have the highest 𝑅2 values

on the test set (comprising molecules unseen during the training stage), pointing towards

their better generalization capabilities. In addition, their predictive accuracy is higher even

when the number of training samples is reduced by nearly an order of 4 (3488 for 𝑇𝑏 vs 800 for

𝑇𝑐). The SMILES representations-based model is seen to perform poorly under small-sample

conditions. The groups representations-based models though have a near-perfect accuracy

on the training set, the performance on the test set in both the cases is significantly lower,
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and therefore, the models overfit the training set.

(a) Grammar (b) Grammar

(c) SMILES (d) SMILES

Figure 2.7: Regression results on the normal boiling point (𝑇𝑏) and critical temperature (𝑇𝑐)
prediction tasks on the test set containing molecules unseen at the model training stage.

To gain a better understanding of the model performance for various molecules, the

prediction errors (𝑦 − 𝑦) are studied as a function of the complexity of the molecule. The

complexity of molecules inspired by the chemical scoring functions (CSF) [39] for scoring the

chemical and synthetic complexity of a reaction pathways is defined as,

𝐶𝑆𝐹 = SMILES_LEN3/2 + 𝛼RINGS + 𝛽STEREO (2.10)

where SMILES_LEN is the length of the SMILES string of the molecule which is related

to its mass and overall complexity, RINGS is the total number of rings in the molecule and

STEREO is the number of stereocenters in the molecule. The parameters 𝛼 and 𝛽 could be
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tuned but for simplicity, their values are fixed to the average value for the SMILES_LEN3/2

across all molecules to ensure the three terms contribute roughly equally to the CSF score.

The plot of the CSF and the prediction errors for 𝑇𝑏 and 𝑇𝑐 using different representations

for molecules in the test set are presented in Figure 2.8.

(a) 𝑇𝑏 vs CSF; grammar model (b) 𝑇𝑐 vs CSF; grammar model

(c) 𝑇𝑏 vs CSF; SMILES model (d) 𝑇𝑐 vs CSF; SMILES model

Figure 2.8: Prediction error vs molecular complexity analysis using chemical scoring functions
(CSF) for 𝑇𝑏 and 𝑇𝑐 on the test set containing molecules unseen at the model training stage.

Based on these results, the following inferences are drawn:

• For the grammar representations, both for 𝑇𝑏 and 𝑇𝑐, the relationship between the

prediction error and CSF is either non-existent or very weak, pointing towards the

complexity-agnostic nature and hence, wider generalizability/applicability of the fitted

model. This is established by the slope and the intercept of the regression line along with

their confidence bounds indicated in Figure 2.8(a) and (b) for 𝑇𝑏 and 𝑇𝑐, respectively.

• The models fitted using the SMILES representations seem to underpredict the proper-
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ties (negative 𝑦−𝑦) for complex molecules. This points towards their inability to capture

the complex interactions between various functional groups in complex molecules and

erroneously treats them as relatively simpler molecules. The grammar-based models

do not suffer from this bias, possibly due to their richer features.

• Across both the models, the absolute values of the prediction errors are relatively high

for smaller or simpler molecules. However, even in this case, the errors for the grammar-

based models are much smaller than the errors in the other model.

It is hypothesized that the nearly non-existent correlation between the prediction errors

and the molecular complexity for the SMILES grammar model could be attributed to the

higher structural information in-built in these representations. The sources of error in a

machine learning models could be attributed to two factors – first, the structure-based errors

and model inadequacies, and second, the errors in the parameter estimates. The latter is

often due to limitations of the model in mapping the transformations between the features

and the target variable including sub-optimal parameter estimates. The former, however,

depends on the ability of the representation (features) in capturing the molecular chemistry.

The grammar representations, therefore, do not seem to suffer from the structure-based

limitations but only the model-based errors.

In order to asses the performance of our model better, the percentage deviation of the

predicted values from the measured property values is computed based on their relative

absolute percentage errors, for both 𝑇𝑏 and 𝑇𝑐, defined as

𝑅𝐴𝐸 (%) = 100 × (𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒)/𝑦𝑡𝑟𝑢𝑒 (2.11)

In addition, the same exercise is also performed end-to-end (representation learning, model

training, RAE computation) for a subset of the entire dataset containing only hydrocarbon

molecules. This dataset contained 1134 molecules that were used for learning molecular rep-

resentations, 628 and 34 data points respectively for training and testing the 𝑇𝑏,ℎ𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛𝑠
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estimation model, and 251 and 14 data points respectively for training and testing the

𝑇𝑐,ℎ𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛𝑠 estimation model. The error distribution plots are presented for our mod-

els in Figure 2.9 and compare the results against those presented in Alshehri et al. [11] on

various metrics in Table 2.2.

(a) Error distribution for the entire dataset

(b) Error distribution only for the hydrocarbons dataset

Figure 2.9: The relative absolute percentage error plots obtained using the grammar repre-
sentation model for 𝑇𝑏 and 𝑇𝑐 on the entire dataset (training set + test set).
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Table 2.2: Comparison with a previous work on property estimation that worked with the
same dataset. The numbers indicate the percentage of molecules below the given percentage
relative error threshold except the last column that provides values for the maximum per-
centage relative error observed in the predictions.

1% error 5% error 10% error 15% error Max. error

Alshehri et al. [11] 𝑇𝑏 79.1 87.8 92.7 - >50%
𝑇𝑐 84.4 91.4 94.2 - >40%

Our model 𝑇𝑏 42.0 82.3 94.9 98.8 30.2%
𝑇𝑐 51.8 82.1 94.9 98.9 25.3%

𝑇𝑏,ℎ𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛𝑠 65.8 98.9 100 100 8.2%
𝑇𝑐,ℎ𝑦𝑑𝑟𝑜𝑐𝑎𝑟𝑏𝑜𝑛𝑠 72.9 98.0 100 100 6.3%

It is observed that even though our model predicts relatively fewer number of molecules

within the 1% error threshold, the model quickly catches-up and outperforms the model by

Alshehri et al. for an error threshold of 10% and above, with ∼ 99% of all the predictions

falling within a 15% error threshold. Moreover, the maximum prediction error for 𝑇𝑏 and 𝑇𝑐 at

∼ 30% and ∼ 25%, respectively, is much lower than the maximum error reported by Alshehri

et al. for their best performing model. The performance on the hydrocarbons dataset is

significantly better with nearly 98 − 99% of all the molecules within an error-threshold of

less than 5%, both for 𝑇𝑏 and 𝑇𝑐 estimation. The gradually increasing trend in the relative

errors (as opposed to a steep increase beyond a certain number of molecules), highlights a

smooth functional mapping from the features to the property values learned by the ML-based

regression model. As a consequence of this, the model has better generalizability. Therefore,

it is inferred that our model is robust towards encountering new molecules or the presence

of outliers in the dataset. The latter is a major issue because new molecules are being

synthesized at a much faster pace and the experimentally measured properties dataset often

have errors and outliers.

2.4.3 Feature importance and model interpretability

To further bolster the interpretability of our model, an analysis using Shapley values

is performed to understand the contribution of the individual features towards the model
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predictions. The Shapley values were computed using a weighted k-means approach using

10 samples weighted by the number of points they represent. This analysis is performed the

two models each for 𝑇𝑏 and 𝑇𝑐 properties, separately.

The feature contribution charts for the 𝑇𝑏 and 𝑇𝑐 predictions are presented as

stacked bar plots in Figures 2.10 (a) and (b), respectively. In order to allow for

an easy comparison on a relative scale, the feature contributions are scaled in the

range 0 to 1 by performing a min-max scaling for each model separately. It is

observed that the most important features (out of the 32 features) for the gram-

mar model are 𝑇𝑏 : {22, 25, 2, 6, 20, 3, 1, 12, 24, 8, 27, 5, 30, 15, 29, 16, 18, 28, 0, 7}, 𝑇𝑐 :

{22, 24, 17, 3, 6, 20, 5, 1, 15, 9, 7, 27, 13, 8, 29, 16, 2, 28, 23, 21} and for the SMILES

models are 𝑇𝑏 : {13, 25, 12, 10, 3, 11, 8, 23, 26, 28, 18, 15, 7, 16, 29, 24, 0, 5, 27, 30},

𝑇𝑐 : {13, 10, 22, 23, 28, 25, 31, 24, 7, 2, 26, 11, 18, 17, 16, 6, 27, 3, 12, 15}.

(a) 𝑇𝑏 (b) 𝑇𝑐

Figure 2.10: Feature importance charts (scaled) for the 𝑇𝑏 and 𝑇𝑐 predictions for all the
three representations. The feature importance are relative and indicate the contribution of
each feature towards predicting the properties of interest. It is seen that not all features are
equally important and the unimportant ones could be dropped without much impact on the
model performance.

An interesting observation based on the above model is that the feature importance for

a given molecular representation (grammar or SMILES) is very similar for both 𝑇𝑏 and 𝑇𝑐

predictions. For instance, of the 20 most important features for the grammar-based represen-

tations for 𝑇𝑏 and 𝑇𝑐 prediction, 15 out of 20 features are common. For the SMILES-based

representations too 15 out of 20 features are common. This points towards a possible corre-
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lation between the features and the underlying molecular chemistry (such as intermolecular

forces and interactions between various molecular groups). This implies that the model

has discovered an overlap between a majority of the features responsible for the underlying

chemistry behind the two properties overlap. In fact, this observation is rooted in chemistry

since it is known that the normal boiling point (𝑇𝑏) and critical temperature (𝑇𝑐) of a given

molecule are correlated. A side-by-side plot of the relative feature contributions for 𝑇𝑏 and

𝑇𝑐 models for grammar-based representations is shown in Figure 2.11 (a).

In order to ensure this chemistry-correlation is indeed captured by the developed model

and it is not just an artifact of the example considered, an additional grammar representation-

based model is trained following the same approach for predicting critical pressure (𝑃𝑐) which

has nearly the same number of training data points a 𝑇𝑐. A side-by-side plot of the relative

feature contributions for 𝑇𝑏 and 𝑃𝑐 is shown in Figure 2.11 (b). As expected from chemistry,

it is seen that the correlation between feature importance is much weaker between these

properties when compared to the feature correlation between 𝑇𝑏 and 𝑇𝑐. Thus, it is conluded

that the grammar-based features preserve the underlying chemistry correlations between

molecules and consequently in the model analysis. However, the grammar2vec approach in

its current form could only be used to infer chemistry correlations indirectly which could

then be used to gain a deeper understanding of the system as shown using Shapley values.

Developing a more detailed analysis framework to facilitate a deep understanding of the

important features from a chemistry perspective is one of our future directions of research.
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(a) 𝑇𝑏 vs 𝑇𝑐

(b) 𝑇𝑏 vs 𝑃𝑐

Figure 2.11: Comparison of feature importance (contributions) for regression models for 𝑇𝑏,
𝑇𝑐, and 𝑃𝑐. Based on the underlying chemistry-based correlations, it is expected that 𝑇𝑏 and
𝑇𝑐 would have similar feature importance, whereas 𝑇𝑏 and 𝑃𝑐 would have relatively higher
differences in feature importance. This behavior is observed in the above comparison plots
between 𝑇𝑏 vs 𝑇𝑐 and 𝑇𝑏 vs 𝑃𝑐.

2.4.4 Model pruning

Having obtained information on the importance of various features for estimating molec-

ular properties of interest, this information is leveraged to further simplify our model by

pruning the features. To do this, for each representation, models are built starting with

a model with just the top-most important feature and compute the 𝑅2
𝑡𝑒𝑠𝑡 value, then build

another model with this feature and the next most important feature and again compute
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the 𝑅2
𝑡𝑒𝑠𝑡 value, and do this sequentially until a sufficiently good performance is observed for

the mode. The plot of the 𝑅2
𝑡𝑒𝑠𝑡 values for sequentially developed models (from 1 to top-20

features) for both the representation vs the number of features is presented in Figures 2.12

(a) and (b) for 𝑇𝑏 and 𝑇𝑐 model.

(a) 𝑇𝑏 (b) 𝑇𝑐

Figure 2.12: The 𝑅2
𝑡𝑒𝑠𝑡 as a function of the number of features for the different models.

Table 2.3: Comparison of model performance (test-𝑅2) with different number of features.

# Features Grammar SMILES

𝑇𝑏
32 0.91 0.79
20 0.90 0.77

𝑇𝑐
32 0.90 0.48
20 0.90 0.49

It is observed that both the models require just 20 features or fewer to achieve nearly the

same level of performance as obtained by using all the 32 features. The comparison of the

performance on the test set using 32 and 20 features for 𝑇𝑏 and 𝑇𝑐 predictions are presented

in Table 2.3. Therefore, the final pruned model is much simpler and is characterized by just

20 features that are dense, rich, and capture the molecular structural information efficiently.

Moreover, it is observed from the trend in Figure 2.12 that in both the cases, the grammar-

based models achieve a significantly higher 𝑅2 by using fewer features to attain the same

accuracy both for 𝑇𝑏 and 𝑇𝑐 predictions. For example, the grammar model achieves an
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𝑅2 of nearly 0.8 for both 𝑇𝑏 and 𝑇𝑐 using just 7 features whereas it requires at least 20

features for the SMILES-based models to achieve a similar 𝑅2. These again point toward the

richness of the grammar features and its better generalization, as demonstrated earlier in the

section information-theoretic analysis and complexity-agnostic nature of the model shown

through the error vs. CSF analysis. In addition, fewer features would translate to better

computational efficiency and a smoother decision boundary – both of which result in better

generalizability of the model on unseen data points. In other words, the model predictions

would have smaller variance and hence lower possibility of overfitting (or memorizing) the

training data.

2.5 Conclusions

Thermodynamic property prediction is an important problem that requires a systematic

approach to ensure the data-driven models are rooted properly in fundamental principles

of physics and chemistry. Engineering the molecular representations that are input to such

models in a way that maximizes the amount of physics/chemistry captured is one possible

approach. Here, the SMILES grammar-based, dense vector representations obtained using

the Grammar2vec framework are identified to be one such promising possibility. These

representations were obtained by invoking the natural language analogy to generate vector

representations for ‘molecular sentences’ constructed by combining the SMILES strings with

their underlying SMILES grammar production rules.

The results demonstrated the superiority of the Grammar2vec molecular representations.

They were shown to be associated with richer features that capture different chemistry, lower

conditional uncertainty, better regression statistics both for data-rich (𝑇𝑏) and data-limited

(𝑇𝑐) scenarios, higher efficiency in capturing molecular complexity indicated by the error

analysis, and relatively simpler models with fewer features when compared to models using

other representations. It was established that data alone is not sufficient to make better

predictions – as is often assumed in the current era of deep learning – at least in chemistry.
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Instead, data along with richer representations that capture the intricacies of the underlying

entities is of equal importance. The Grammar2vec framework could be used for estimating

several other thermodynamic properties (in addition to 𝑇𝑏, 𝑇𝑐) using relatively simpler and

more interpretable machine learning models.

It is envisioned that representations rooted in chemistry would hold significant value, not

only for the thermodynamic property prediction task but also for other chemistry problems

that demand data-driven modeling. Future extensions of this work involve applications such

as incorporating additional molecular structural descriptors, employing the grammar2vec

framework for performing comprehensive property estimation on other thermodynamic prop-

erties with larger datasets, and carrying out molecule design and optimization in conjunction

with retrosynthesis planning.
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Chapter 3: Forward and Retrosynthesis Reaction Prediction

Reaction prediction, both in the forward direction (from reactants to products) as well as

in the retrosynthesis direction (from product to reactants), is a central problem in computa-

tional chemistry. Traditional reaction prediction and retrosynthesis planning relied heavily

on the expertise of chemists, which is both time-consuming and resource-intensive. In con-

trast, data-driven methods offer automated strategies for predicting reaction outcomes fairly

accurately, enabling the design of high-throughput systems, computer-aided retrosynthesis

planning, and other such computational chemistry-focused applications. The immense in-

terest in this problem over the recent years could be attributed to its practical applications

across areas such as drug discovery, synthesis of novel organic compounds, and improvements

in the reactions pathways from a commercial, social, or economic viability standpoint. The

recent advances in artificial intelligence (AI), particularly the emergence of language models,

have sparked further interest in the field.

The computer-aided reaction prediction problem has two distinct aspects: forward pre-

diction, which involves predicting the reaction product from a set of reactant molecules,

and retrosynthesis (or inverse reaction prediction), which involves identifying the necessary

precursors for synthesizing a given target molecule. While both problems require understand-

ing complex molecular interactions to correctly identify target molecule(s), retrosynthesis is

notably more difficult due to its combinatorial nature. Multiple synthesis pathways are of-

ten feasible at each step, and the entire pathway sequence needs to be predicted correctly.

However, the challenge of integrating explicit chemistry information with machine learn-

ing techniques remains unaddressed for both forward and retrosynthesis reaction prediction

frameworks. It has been argued that the development of hybrid approaches that combine

data-driven techniques with chemistry knowledge is required for more robust and practical
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reaction prediction models [5, 40].

Our focus is the single-step reaction prediction and retrosynthesis prediction, which ap-

proximates multiple pathways as a ’single-step’ leading from reactant to products, or vice

versa. Single-step models can be broadly classified into two categories: template-based and

template-free. Template-based models rely on predefined reaction templates to categorize

and predict chemical pathways. These templates are derived from data-driven approaches or

expert knowledge. One of the pioneering template-based retrosynthesis models, LHASA [41],

incorporated chemical templates through a combination of reaction logic and heuristics. A

more recent template-based approach, Synthia (formerly known as Chematica) [39], utilizes

a decision tree to select a reaction template from over 70, 000 expert-created rules. Other

template-based approaches which utilize various reaction heuristics and similarity scores are

presented in [42, 43, 44].

On the other hand, recent advancements in computational power and machine learning

have spurred a focus on template-free models. Template-free models use purely data-driven

approaches to plan and evaluate reaction pathways and address some limitations of template-

based methods such as lack of generality of prediction and dependence on template-quality.

These methods typically represent molecules as strings in simplified molecular-input line-

entry system (SMILES) format and model the reaction prediction problem as a sequence-to-

sequence (seq2seq) problem. One of the earliest such works is by Liu et al. [45]. Recently, ow-

ing to the success of the state-of-the-art transformer architecture [46], a molecular transformer

model was proposed [47] for forward prediction with significant performance improvement

over other approaches [48, 49, 50]. Similarly, for the retrosynthesis problem, transformer-

based approaches have been shown to be promising [51, 52, 53, 54]. The reader is referred to

[5] for a detailed presentation and comparison of various template-based, template-free, and

hybrid approaches for computer-aided reaction prediction and chemical synthesis.

While the vast majority of sequence-to-sequence models use the SMILES representation

to represent input and target molecules, there are several limitations with using purely text-
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based SMILES representations in sequence modeling frameworks. First, molecules are treated

as merely character-based strings, disregarding the additional structural aspects. Second,

the SMILES representation does not provide explicit structural information on the nature

of chemical bonds, chains, atoms, and so on. Third, the underlying rules characterizing a

SMILES string are disregarded and it is left upon the model to identify these patterns to

ensure syntactically correct SMILES strings during prediction.

For the forward prediction problem, these issues are addressed by building a reaction pre-

diction framework using a text-based representations generated from the underlying SMILES

grammar (instead of just SMILES). Using SMILES grammar-based representations are akin

to providing more syntactic as well as semantic information about a molecule’s SMILES

representation, resulting in chemistry-rich representations that explicitly contain additional

structural information. It is shown that the SMILES grammar-based text representation

leads to improved accuracy, fewer model parameters, and lower conditional entropy from

an information-theoretic standpoint. Our proposed SMILES grammar-based molecular rep-

resentation is a new and promising alternative to the SMILES representation where the

molecules are initially represented as hierarchical tree.

For the retrosynthesis reaction prediction problem, the vanilla transformer architecture is

adapted to handle SMILES grammar trees directly, formulate the retrosynthesis prediction

problem as a tree-to-sequence problem, and perform tree convolution operations inspired by

the group-contribution theory for property prediction. The proposed architecture explicitly

incorporates the hierarchical structure of the molecular grammar tree. The resulting models

achieve nearly state-of-the-art performance on a variety of metrics using relatively simpler

model architectures that are more chemistry-aware.
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3.1 Problem statement and objectives

3.1.1 Forward prediction

Given a set of reactants and the agents facilitating the chemical reaction, our objective

is to predict the most likely major product of the reaction. This is formulated as a machine

translation problem where the input sequences comprising the reactants and agents corre-

spond to the source sentence and the output comprising the major product of the reaction

corresponds to the target sentence (from a different language). The sentence analogues in this

translation task are the set of SMILES strings whereas the characters in each SMILES string

are their word analogues as in a natural language sentence. This analogy between chemical

reactions transformation and natural language translation is exploited for predicting reaction

outcomes.

The SMILES strings, however, are comprised of arbitrary characters that do not pro-

vide chemical or structural information crucial for modeling reaction chemistry systems. A

SMILES grammar, analogous to context-free grammars in natural language [55], is there-

fore used to incorporate structural information for each molecule in our reaction prediction

framework in a hierarchical manner. The sequence of grammar rules corresponding to each

SMILES string therefore becomes their representation in this framework as shown in Figure

3.1. Such SMILES grammar-based representation are an important contribution of our work

due to advantages such as explicit incorporation of chemical structure, reduction of strain on

the model by letting it discover the transformations in a chemical reaction directly without

a need to model the relationships between arbitrary characters. This overcomes overfitting

in neural machine translation models often characterized by a large number of parameters,

and increases the likelihood of predicting molecules with valid SMILES representations.
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Figure 3.1: Modeling forward chemical reaction prediction task as a machine translation or
sequence to sequence modeling problem with molecules represented using SMILES grammar-
based representations.

Figure 3.2: Modeling retrosynthesis chemical reaction prediction as a tree to sequence mod-
eling problem with SMILES grammar tree of the target molecule as input to predict SMILES
strings of the set of precursors.
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3.1.2 Retrosynthesis prediction

A novel approach to the retrosynthesis prediction problem is presented by formulating

it as a tree-to-sequence modeling task. Our input molecule(s) are represented as SMILES

grammar-based trees, while the target molecule is represented as a canonical SMILES string.

This representation choice naturally gives rise to a tree-to-sequence modeling problem, rather

than the commonly used sequence-to-sequence framework. To the best of our knowledge, this

is the first attempt to develop a tree-to-sequence approach for both retrosynthesis and forward

reaction prediction.

The retrosynthesis prediction problem has two scenarios: known and unknown reaction

class. In the known reaction class case, a class identifier is appended to the beginning of

the target molecule, indicating the reaction class type. Conversely, for the unknown reaction

class scenario, only the target molecule is provided as input. Since there may be multiple

reactants in the predicted pathway, a special delimiter character "." is used to separate

precursors. Additionally, a special <START> token to begin the translation process is used.

The problem formulation diagram is illustrated in Figure 3.2.

3.2 Methods

In this section, the background methods for the sequence-to-sequence approach for for-

ward prediction and tree-to-sequence approach for retrosynthesis are presented. This includes

an overview of the SMILES grammar-based molecular tree representations, the vanilla trans-

former for the forward prediction model, the modifications made to the original transformer

architecture to include tree positional encodings and convolutional blocks, and the beam

search decoding procedure used to predict the most likely target sequences for a given input

sequence.
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3.2.1 Formal grammars and grammar for SMILES

Formal grammars have been the backbone of various language modeling tasks such as se-

mantic interpretation of natural language, dialogue understanding, and machine translation.

They are largely based on the idea that group of words belong to the same constituent units

and that different constituents could be hierarchically grouped together to convey the given

meaning [56].

Context-free grammar (CFG)

The most widely used formal grammar is the Context-Free Grammar (CFG) and was

formalized in [55]. A context-free grammar consists of a set of productions (or rules) that

express the way in which different words or symbols, comprising the lexicon in the language,

can be grouped and ordered together. The symbols used in a CFG are grouped into two

classes – symbols that correspond to the actual words with meaning in the language, called

terminals, and the symbols that represent abstraction over a group of words and are used to

represent a class of words or phrases in the language (terminals), called non-terminals.

Formally, a context-free grammar G is represented by four parameters – 𝑁, Σ, 𝑅, 𝑆 where

• N: a set of non-terminal symbols

• Σ: a set of terminal symbols

• R : a set of production or rules of the form A −→ 𝛽, where A is non-terminal and 𝛽 is

a string of symbols from the set (Σ⋃
𝑁)∗

• S: a designated start symbol and a member of N

Typical English grammar rules comprise sentence level constructions (S −→ NP VP, S

−→ VP), the noun phrase (Det −→ NP), the verb phrase (VP −→ Verb, VP −→ Verb NP)

and so on, where S, NP, VP, Det, and Verb are the sentence symbol, noun phrase, verb

phrase, determiner, and verb, respectively.
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A CFG can be thought of as a generator that could be used to generate sentences in a

language by sequential application of productions, or as a tool for assigning structure to a

given sentence [56]. In our work, the latter aspect of CFGs is primarily focused on, and they

are used to incorporate structural information from a SMILES string.

Grammar for SMILES

Analogous to the context-free grammar for the English language, there exists a formal

grammar for the string-based molecular representations used in chemistry such as the most

commonly used representation – SMILES [14]. As described in the foregoing section, the set

of productions (or rules), non-terminals, terminals, and a designated start symbol are the

essential components of a context-free grammar. These components for the SMILES represen-

tations are presented in 1, that could be applied sequentially to generate the grammar-based

parse trees representing the constituency of various components in a given SMILES string.

For instance, consider the simplified grammar in Table 3.1. Analogous to the notation for

context-free grammar introduced in the section Context-free grammar (CFG), the following

are their equivalents in this grammar.

• N: { SMILES, CHAIN, BRANCHED_ATOM, BOND, ATOM, RINGBOND, BB, RB, BRANCH,

AROMATIC_ORGANIC, ALIPHATIC_ORGANIC, DIGIT }

• Σ: { (, ), =, c, C, O, 1, 2 }

• R: productions (rules) 1 through 20 in Table 3.1

• S: SMILES

1http://opensmiles.org/spec/open-smiles-2-grammar.html
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Table 3.1: Representative subset of the SMILES grammar

S.No Production rules

1 SMILES −→ CHAIN

2 CHAIN −→ CHAIN BRANCHED_ATOM

3 CHAIN −→ CHAIN BOND BRANCHED_ATOM

4 CHAIN −→ BRANCHED_ATOM

5 BRANCHED_ATOM −→ ATOM RINGBOND

6 BRANCHED_ATOM −→ ATOM

7 BRANCHED_ATOM −→ ATOM BB

8 BRANCHED_ATOM −→ ATOM RB

9 BB −→ BRANCH

10 RB −→ RINGBOND

11 BRANCH −→ ( CHAIN )

12 RINGBOND −→ DIGIT

13 BOND −→ =

14 ATOM −→ AROMATIC_ORGANIC

15 ATOM −→ ALIPHATIC_ORGANIC

16 AROMATIC_ORGANIC −→ c

17 ALIPHATIC_ORGANIC −→ C

18 ALIPHATIC_ORGANIC −→ O

19 DIGIT −→ 1

20 DIGIT −→ 2

In order to motivate the grammar representation used in our framework, consider methyl

ethylene (propene) and cyclopropane with SMILES string representations as CC=C and C1CC1,

respectively. The parse tree structures corresponding to the two strings are shown in Figures

3.3 and 3.4, respectively. The grammar representation for each of these molecules correspond

to the sequence of production rules extracted when these structures are parsed in a bottom-up
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left-corner strategy as highlighted in their respective schematics.

Figure 3.3: The parse-tree obtained for propene with the SMILES representation as CC=C
using the representative grammar in Table 3.1. The sequence of production rule indices
obtained while parsing the above tree corresponds to the grammar representation and is
given as 1, 3, 2, 4, 6, 15, 17, 6, 15, 17, 13, 6, 15, 17

Consider the parse tree for propene given in Figure 3.3. This parse tree contains infor-

mation about the various chemistry aspects of the given molecule. For instance, it contains

information such as the number of aromatic carbon atoms, the presence of a ring-structure,

the alternating double bonds in the ring, the presence of an aliphatic oxygen atom, and finally

the active hydrogen atom attached to the oxygen atom. Moreover, this information is repre-

sented in a hierarchical manner, with the broadest class of rules at the top and increasingly

more specific ones towards the bottom of the parse-tree. The parse-tree structure in Figure

3.3 is encoded using the sequence of productions used to generate the given structure as the

sentence analogue in our language model with the individual rule indices as the equivalent

word analogues.

Contrasting such a grammar-based representation with a purely string-based represen-
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Figure 3.4: Another motivating example representing the the parse-tree structure obtained for
cyclopropane with SMILES representation as C1CC1. The equivalent grammar representation
is given as 1, 2, 2, 4, 5, 15, 17, 12, 19, 6, 15, 17, 5, 15, 17 12, 19

tation that treats each of the tokens comprising the SMILES string (‘C’, ‘C’, ‘=’, ‘C) as

independent entities, the differences between the two are evident. A model trained on a

purely character or string-based representation would require the model to first understand

the structural relationships between the different tokens comprising the SMILES string which

is not a trivial task for any neural language model architecture, and only then model the

transformation between the reaction space to the product space.

Remark 1 : Although the grammatical validity of a SMILES string does not necessarily

mean that the corresponding compound is chemically feasibly, it is a step closer towards

ensuring synthesizable molecules are predicted as the output.

Remark 2 : In contrast to the English language, the proposed SMILES-grammar based

molecular representation does not suffer from ambiguity with respect to its constituency

parsing structure since a given (canonicalized) SMILES string cannot correspond to two

completely different molecules under different contexts.
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3.2.2 Sequence-to-sequence transformer

The transformer architecture was proposed recently in [46] for machine translation tasks

and comprises an encoder-decoder architecture that is more parallelizable and superior to

other seq2seq architectures. Transformers replaced the complex recurrent (or convolutional)

neural network layers with simpler attention based mechanisms proposed in [57] combined

with positional embedding for encoding sequential information. An overview of the trans-

former architecture as proposed in [46] is presented in Figure 3.5. In the following sections,

the concepts of the encoder-decoder architecture, positional encoding, and the attention-

mechanism that comprise the building blocks of a transformer are briefly described.

Figure 3.5: The encoder-decoder model architecture of a transformer. The left-half cor-
responds to the encoder whereas the right-half corresponds to the decoder, the positional
information is encoded using the positional embedding, and multi-head attention mechanism
aids the model in discovering relationships between groups of tokens at different stages.
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Encoder-Decoder architecture

The transformer architecture primarily consists of an encoder-decoder structure, wherein

the encoder maps an input sequence 𝑥1, 𝑥2, . . . , 𝑥𝑛 to a continuous latent-space representation

𝑧1, 𝑧2, . . . , 𝑧𝑛. Given z, the decoder generates the output sequence 𝑦1, 𝑦2, . . . , 𝑦𝑛 one element at

a time, in an autoregressive manner, consuming the previously generated tokens as additional

input while generating the next.

The encoder and decoder consist of stacks of identical layers, each of which are comprised

of two sublayers – a multi-head attention mechanism, and a fully connected feed-forward

neural network. There are residual connections around each of the sublayers along with a

batch normalization. The decoder, in addition, consists of an additional layer which performs

a multi-head attention over the output of the encoder.

Positional encoding

Since the transformer architecture does not contain recurrent or convolution layers, the

sequential information of the tokens in a sequence is fed to the model through these em-

beddings. Mathematically, positional encoding is a mapping of the position of a given word

(pos, an integer) in the sequence to a 𝑑-dimensional vector space ( ®𝑝𝑝𝑜𝑠). These mappings are

characterized by sines and cosines of different frequencies, given by

®𝑝𝑝𝑜𝑠,𝑖 =


𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑘/𝑑), if 𝑖 = 2𝑘

𝑐𝑜𝑠(𝑝𝑜𝑠/100002𝑘/𝑑), if 𝑖 = 2𝑘 + 1

(3.1)

The positional encodings are added to the word embeddings representing the individual

tokens in a sentence, thus, the dimensions of the two embeddings, 𝑑𝑤𝑜𝑟𝑑 and 𝑑𝑝𝑜𝑠, must be

the same so that the two can be summed, i.e.

®𝑤(𝑡)′ = ®𝑤(𝑡) + ®𝑝𝑝𝑜𝑠𝑡 (3.2)
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where ®𝑤(𝑡)′ represents the word embedding with encoded position information, ®𝑤(𝑡) repre-

sents the word embedding, and ®𝑝𝑝𝑜𝑠𝑡 represent the positional encoding.

Attention mechanism

The attention mechanism lies at the heart of the transformer architecture and allows the

model to focus on different tokens in the sequence at different stages of the network, enabling

it to discover multiple relationships between groups of tokens.

The attention-mechanism used in [46] is the ‘Scaled-Dot Product Attention’, characterized

by a set of queries, keys, and values vectors. The query and key vectors are of dimensions 𝑑𝑘

and the value vector is of dimension 𝑑𝑣. The attention-score then, is computed as softmax

function applied over the dot-products of the queries and key vectors, scaled down by a factor

of
√
𝑑𝑘 , given by

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑄𝐾
𝑇

√
𝑑𝑘

)𝑉 (3.3)

where Q, K, and V are the matrices of query, key, and values vectors, respectively. The

attention score computed above determines the importance that should be given to different

parts of an input sequence in the current context. In order to allow the model to jointly factor

in information from different representation subspaces at different positions, multi-headed

attention is computed which involves computing multiple attention scores, in parallel, which

are then concatenated and projected using a linear transformation to compute the multi-head

attention scores as,

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄, 𝐾,𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, . . . , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (3.4)

where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖
, 𝑉𝑊𝑉

𝑖
), and 𝑊𝑄

𝑖
∈ R𝑑𝑝𝑜𝑠×𝑑𝑘 , 𝑊𝐾

𝑖
∈ R𝑑𝑝𝑜𝑠×𝑑𝑘 , and 𝑊𝑉

𝑖
∈

R𝑑𝑝𝑜𝑠×𝑑𝑣 are the projection matrices for Q, K, and V, respectively.
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3.2.3 Tree-to-sequence transformer

Since the retrosynthesis problem is formulated as a tree to sequence modeling problem,

The state-of-the-art transformer is modified so that it is capable of handling tree-based in-

put data, as illustrated in Figure 3.6. Both the vanilla and tree-to-sequence transformer

adopt an encoder-decoder architecture. The encoder maps the input to a latent space, while

the decoder autoregressively decodes this latent representation to generate the output se-

quence. The key adaptations to the original transformer architecture involve integrating

tree positional encodings and tree convolutional block sublayers, which effectively handle

the hierarchical nature of the input data. In the tree-to-sequence transformer, the attention

mechanism, which enables the transformer to determine relationships between tokens in the

input and output, is retained. Specifically, the “Scaled-Dot Product Attention" introduced

in [46], which uses query, key, and value vectors is used.

Tree positional encodings

The original transformer paper [46] employs sequential positional encodings using sinu-

soidal functions with varying frequencies. These encodings are added to the embeddings in

the encoder and decoder to provide the model with information about the order of the input

sequence. However, when working with tree-structured data, flattening into a linear sequence

loses important hierarchical information. Parents and children may end up far apart in the

sequential representation. Conversely, consecutive tokens in the flattened sequence may not

accurately represent their true relationships in the grammar tree. To overcome these chal-

lenges and better preserve the hierarchical structure, tree positional encodings introduced in

[58] are adopted. These tree positional encodings are based on the sinusoidal encodings used

in the original transformer, but they are designed to explicitly encode the positions of nodes

in the grammar tree. By incorporating tree positional encodings, G-MATT better utilizes

the inherent tree hierarchy for more accurate predictions.

The input grammar tree 𝑇 is defined as a tuple 𝑇 = (𝑉, 𝐸, 𝑟), where 𝑉 is the set of nodes,
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(a) (b)

Figure 3.6: A schematic comparison of the vanilla sequence-to-sequence transformer in (a)
and our tree-to-sequence transformer in (b). The two new components in the tree2seq trans-
former are the tree positional encoding (orange) and tree convolution block (blue). The tree
positional encoding replaces the sequential encoding in the encoder and the TCB replaces
the feed forward network in the encoder only.

𝐸 is the set of edges, and 𝑟 is the root node. For any 𝑣 ∈ 𝑉 with 𝑣 ≠ 𝑟, let 𝑣∗ be the parent

of 𝑣. Additionally, 𝑖𝑣 is defined as the index of 𝑣 among its siblings (i.e. the children of 𝑣∗).

For example, if a node has three children 𝑎, 𝑏, 𝑐 (in that order), then 𝑖𝑎 = 1, 𝑖𝑏 = 2, and

𝑖𝑐 = 3. The path from the root 𝑟 to any node 𝑣 ∈ 𝑉 can be uniquely identified by an edge

path 𝑝𝑣 ∈ Z𝐿≥0 of length 𝐿 according to the following definition:

𝑝𝑣 =


®0𝐿 if 𝑣 = 𝑟

𝑖𝑣 ∥ 𝜋𝐿−1(𝑝𝑣∗) otherwise,

where ®0𝐿 denotes the zero vector of length 𝐿 and 𝜋𝐿−1(𝑝𝑣∗) denotes the first 𝐿 − 1 elements
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of 𝑝𝑣∗ .

In Figure 3.7b, the edge paths for each node in the example grammar tree are illustrated.

For clarity, the edges corresponding to each child are labeled with their respective index 𝑖𝑣.

Note that the root node smiles edge path is a vector of all zeros. Additionally, each child

shares its parent’s node path shifted to the right by one.

(a) (b)

Figure 3.7: The tree paths for the example grammar tree for propene CC=C. The grammar
tree with edge labels is shown in (a) and the corresponding edge paths with 𝐿 = 8 for each
node in (b). The subscripts in the node labels are solely to distinguish between different
nodes with same labels.

To represent the position of a node 𝑣, sinusoidal positional encodings similar to the

approach in [46] are utilized. These encodings are applied individually to each element in

the edge path 𝑝𝑣, which results in an edge encoding 𝐸𝐸𝑣,ℓ. For every node 𝑣 ∈ 𝑉 and index
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in the edge path ℓ ∈ {1, . . . , 𝐿}, the edge encoding components are defined as follows:

(𝐸𝐸𝑣,ℓ)2𝑖 = sin(𝜔𝑖 · (𝑝𝑣)ℓ)

(𝐸𝐸𝑣,ℓ)2𝑖+1 = cos(𝜔𝑖 · (𝑝𝑣)ℓ)

with 𝑤𝑖 = 1/100002𝑖/𝑑 for 𝑖 ∈ {1, . . . , 𝑑2 }. The parameter 𝑑 is the dimension of the edge

encoding i.e. 𝐸𝐸𝑣,ℓ ∈ R𝑑. The tree positional encoding 𝑇𝐸𝑣 is obtained by concatenating the

edge encodings in the edge path 𝑝𝑣.

𝑇𝐸𝑣 = 𝐸𝐸𝑣,1 ∥ . . . ∥ 𝐸𝐸𝑣,𝐿 .

The resulting positional encoding has a dimension of 𝑑 · 𝐿, equal to the model size 𝑑𝑚𝑜𝑑𝑒𝑙 or

the node embedding dimension. In Figure 3.7a, the edge and tree positional encodings are

illustrated for the bond node in the example grammar tree for propene with 𝑑 = 4. In our

model, 𝐿 is set to 64, 𝑑 is set to 4, and 𝑑𝑚𝑜𝑑𝑒𝑙 is set to 256. The choice of 𝐿 is based on the

height of the largest SMILES molecular grammar tree in the dataset, ensuring that all paths

are well-defined.

The proposed tree positional encodings offer several desirable properties, as demonstrated

in [58]. Like the original sequential encodings, tree encodings satisfy uniqueness. This is be-

cause the edge path from the root 𝑟 to a node 𝑣 is unique, and the sinusoidal encodings are

injective for each frequency 𝜔𝑖 due to the transcendality of 𝜋. Furthermore, the encoding of

a child node shares the first 𝑑 · (𝐿 −1) dimensions with its parent’s encoding, shifted right by

𝑑 dimensions. This property, combined with the uniqueness property, enables the model to

distinguish whether a node is an ancestor or sibling of another node. Finally, the mathemat-

ical properties of sine and cosine allow the encoding for a node to be efficiently computed by

a linear combination of its sibling’s encodings. These characteristics of tree positional encod-

ings provide valuable hierarchical information, allowing the model to effectively capture the

structural relationships within the grammar tree.
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Tree convolutional block

Inspired by [59], a modified Tree Convolutional Block (TCB) sublayer is incorporated into

the tree-to-sequence transformer architecture, enabling it to effectively handle tree-structured

data. This block provides each node access to information about its parent and children,

thereby explicitly incorporating hierarchical information into the model. The TCB replaces

the feed-forward network following the attention sublayer in the vanilla transformer encoder

[46]. Additionally, a TCB is introduced after the positional encoding, which combines the

parent, children, and current node embedding before any self-attention is applied. The TCB

is not included in the decoder since it predicts a sequence of SMILES tokens and does not

handle tree information.

For a given node 𝑥, the current node is represented as 𝑥𝑡 , its parent as 𝑥𝑝, and the

average of its children nodes as 𝑥𝑐. Specifically, if node 𝑥 has children 𝑥𝑐1 , 𝑥𝑐2 , . . . , 𝑥𝑐𝑁 , then

𝑥𝑐 =
1
𝑁

∑𝑁
𝑖=1 𝑥𝑐𝑖 . The single-layer tree convolution block for node 𝑥 is computed as follows:

𝑇𝐶𝐵1(𝑥𝑡 , 𝑥𝑝, 𝑥𝑐) = ReLU(𝑥𝑡𝑊𝑡 + 𝑥𝑝𝑊𝑝 + 𝑥𝑐𝑊𝑐)𝑊2 + 𝑏2.

In cases where the current node does not have a parent or children nodes, 𝑥𝑝 or 𝑥𝑐 are replaced

with a learned embedding 𝑣𝑝 or 𝑣𝑐 respectively.

The TCB can be generalized to multiple layers, where an 𝐿-layer TCB consists of 𝐿

consecutively stacked single-layer tree convolution blocks. The single-layer TCB captures

information from nodes that are one step away from the current node. In contrast, the 𝐿-layer

TCB combines information from nodes up to a maximum distance of 𝐿 away. Consequently,

increasing the depth of the TCB allows the model to access more surrounding context. For

our model, 𝐿 is set to 2 for all TCBs.

Since each encoder layer contains a tree convolution, the internal representation of each

node will progressively include more information about the neighboring nodes. This enables

the attention sublayer to attend to entire components within the tree rather than individual
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nodes. By incorporating multi-layer TCBs, the model gains a deeper understanding of the

hierarchical relationships within the molecular grammar tree, thus increasing its capacity to

learn structural relationships relevant to the underlying chemistry.

It is important to note that a modification has been made to the original TCB archi-

tecture proposed in [59], where the children nodes are used instead of the left-sibling in the

convolution process. Improved performance was observed in our empirical experiments with

this modification, and two possible explanations for this behavior are offered. Firstly, by

utilizing children nodes in the convolution, information can flow both up and down the tree,

rather than being limited solely to the upward direction when using left-siblings. This is

useful because nodes lower in the tree, which typically describe the molecular composition

or bonding, will have access to important local context. Secondly, most production rules

in the grammar involve a limited number of children, typically two. As a result, the order

information of siblings is of relatively low importance, making the use of children nodes a

viable and efficient approach. Moreover, information about the children is effectively retained

by averaging their representations.

To visualize the behavior of the TCB, an example of its operation on the grammar tree

for propene is provided in Figure 3.8. Each colored region represents the convolution win-

dow centered around the corresponding node. It is evident from this illustration that the

TCB enables the model to explicitly incorporate information about the surrounding local

structures. This prior chemistry-aware knowledge allows the architecture to more effectively

model the relationships between molecules, as it possesses richer structural details.
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Figure 3.8: The grammar tree for propene CC=C and three example convolution windows in
red, green, and orange. Each convolution window operates on the respectively colored node,
thereby providing the node with information about its parent and children.

3.2.4 Beam search

During inference, the model’s performance is evaluated using a beam search decoding

strategy to autoregressively predict the output. The decoding process begins with a <START>

token, and the transformer generates the next token from the latent space using the current

predicted sequence as input. The beam search procedure, with a specified beam size 𝐵,

determines the top-𝐵 tokens at each step based on their likelihood and retains the top-𝐵

sequences as the search frontier for the next step. If 𝐵 = 1, the transformer employs a

greedy strategy, selecting the maximum likelihood token at each decoding step. By using

beam search, the model performance could be thoroughly evaluated and compared with the

top-k accuracy reported in other similar works. A beam search size of 𝐵 = 10 is used for all

evaluation metrics outlined in Section “Results". A schematic of the beam-search decoding
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procedure with 𝐵 = 3 is depicted in Figure 3.9.

Figure 3.9: A schematic for a partially completed beam search procedure with beam size
𝐵 = 3. At each decoding step, the 3 most likely sequences are preserved and used as the
search frontier. The 𝐵 most likely tokens for each sequence is computed and the top-𝐵
sequences are used for the next step. The completed sequences are then used to reconstruct
the corresponding SMILES string. The log-likelihood values are indicated above each node
in the schematic.

3.3 Dataset and model training

3.3.1 Dataset

For the forward reaction prediction model, two standard reaction datasets – Jin’s USPTO

dataset [49] and its subset of 80 reactions for benchmarking reaction prediction against human

organic chemists in [50] were used. Lowe’s grants database [60], based on the text mining

work done on US reactions patents granted between 1976 and 2013, has now become one

of the standard datasets for demonstrating quantitative approaches for reaction prediction.

Since this dataset contains erroneous and duplicate reactions, there are several datasets de-

rived from this mining work that address such issues – excluding stereochemical information,

retaining only single product reactions, and removing certain class of reactions. Jin’s USPTO

dataset is one such derived datasets that only includes single-product reactions. Therefore,

this dataset is primarily used to evaluate the performance of the proposed approach, and a
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comparative analysis is performed using the latter dataset. Table 3.2 summarizes the two

datasets.

For the retrosynthesis problem, the USPTO-50K retrosynthesis prediction dataset, which

is a curated subset of the US Patents and Trademark Office’s (USPTO) database [61], was

used. This dataset has been further classified into ten distinct reaction classes [62], and the

number of reactions in each class is detailed in Table 6.11. The filtered dataset exclusively

contains reactants and products, with the reagent information removed, and the SMILES

strings are canonicalized. It is a widely used benchmark dataset in the literature for evaluat-

ing retrosynthesis model performance, offering the flexibility to train models for both known

and unknown reaction class scenarios.

Table 3.2: A summary of the datasets used for training the forward and retrosynthesis
prediction models

Dataset train valid test total

Jin’s USPTO (forward)

with (sanitized) single product 479,035

in grammar 385,429 28,269 37,676 451,374

Human dataset (forward

with (sanitized) single product - - 80 80

in grammar - - 78 78

USPTO-50K (retrosynthesis)

with (sanitized) molecules 50,037

in grammar 38,899 4,849 4,846 48,594

Since our models use the SMILES grammar-based representations, the input molecules’

SMILES strings from the database were parsed using the grammar outlined in Section “??".

As a result, certain molecules may not be in grammar are thus are not included in the model

training process. However, it is worth noting that expanding the grammar to include these
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molecules is straightforward by adding corresponding rules for additional elements such as Si,

Pt, Zn, Mg, and others. Table 3.2 provides a summary of the reaction database, indicating

the number of reactions that are in grammar, along with the train, validation, and test-set

splits.

3.3.2 Model architecture and training

The transformer architecture, like any other machine learning architecture, consists of sev-

eral hyperparameters that need to be tuned for achieving the desired performance. Therefore,

the best hyperparameter values are searched by evaluating various model architectures on

the validation set of Jin’s USPTO dataset. Table 3.3 describes the possible hyperparameters

along with their tuned values characterizing the forward prediction model. The forward pre-

diction model is characterized by ∼ 5M training parameters. The model was trained using

the Adam optimizer [63] with beta 𝛽1 = 0.9, 𝛽2 = 0.98, and 𝜖 = 10−9, and a learning rate

that is characterized by a fixed number of warmup steps and given by

𝑙𝑟 = 𝑑−0.5𝑚𝑜𝑑𝑒𝑙 .𝑚𝑖𝑛(𝑠𝑡𝑒𝑝_𝑛𝑢𝑚
−0.5, 𝑠𝑡𝑒𝑝_𝑛𝑢𝑚 ∗ 𝑤𝑎𝑟𝑚𝑢𝑝_𝑠𝑡𝑒𝑝𝑠−0.5) (3.5)

where 𝑑_𝑚𝑜𝑑𝑒𝑙 is the embedding dimension (positional). At the training stage, in order

to avoid overfitting, a dropout layer is used for both the feed-forward networks and the

attention-mechanism, for the encoder as well as the decoder. A loss function based on sparse

categorical cross entropy between the predicted and actual target sequences is minimized.

The model was trained using TensorFlow 2.1 and python 3.7 for 60 epochs. For generating the

parse-trees and extracting grammar-based features, the Natural Language ToolKit (NLTK)

3.4.5 library was used. The molecular datasets were processed using the 2019 release of

RDKit library.
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Table 3.3: Possible and best hyperparameter values for the model architecture described in
Figure 3.5

Hyperparameter Possible values Final model

Embedding dimensions 128, 256, 512 256

Attention heads 4, 8, 16 8

Feedforward network units 512, 1024 512

Number of layers 4, 6 4

Dropout 0.1, 0.2 0.1

Warmup steps 1k, 4k, 8k, 12k 12k

Figure 3.10: The cross-entropy loss and character-based accuracy for the training and vali-
dation set for the retrosynthesis models. The ‘with reaction class model’ was trained for 250
epochs and the ‘without reaction class model’ for 190 epochs. The oscillatory behavior of
the training loss and accuracy is due to the cyclic learning rate scheduler, which has a cycle
length of 𝑛 = 10.
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Similarly, for the retrosynthesis model, the optimization objective was to minimize the

loss function based on sparse categorical cross-entropy between the predicted and actual

target sequences. The Adam optimizer [63] with hyperparameters 𝛽1 = 0.9, 𝛽2 = 0.98,

and 𝜖 = 10−9 was used. Additionally, a triangular cyclic learning rate schedule proposed

in [64] was used, with a maximum learning rate [𝑚𝑎𝑥 = 5 × 10−4 and a minimum learning

rate [𝑚𝑖𝑛 = 1 × 10−4. The number of epochs per cycle was set to 𝑛 = 10 and learning rate

decay per cycle was 𝛾 = 0.98. During the training stage, dropout layers with probability

𝑝 = 0.2 were incorporated in both the attention sublayer and TCBs to prevent overfitting.

The lengths of the input and output representations to the model were fixed at 350 and 121,

respectively, based on the longest representation lengths observed in the training set. The

retrosynthesis model for known reaction class was trained for 250 epochs, while the model

for the unknown reaction class was trained for 190 epochs. These choices ensured adequate

training convergence and achieved desirable model performance. In Figure 3.10, the cross-

entropy loss and character-based accuracy are plotted for both the training and validation

sets throughout the entire training phase. Notably, early stopping based on validation loss

was not employed since previous works [51] have indicated that such an approach potentially

undermines model performance.

3.4 Results: Forward prediction

3.4.1 Performance metrics

In order to evaluate the performance of our approach, four different measures were consid-

ered that capture different aspects of the model performance, namely – the BLEU (Bilingual

Evaluation Understudy) score [65] which is a standard metric used for the evaluation of

a given translation against the reference translation; the top-1, top-2, and top-3 accuracies

computed by identifying perfect matches between the predictions and the actual product; syn-

tactic validity of the predicted outputs by determining if the predicted molecules SMILES

string is in grammar i.e. could be parsed by the given grammar; and character-based sim-
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ilarity2 between the actual and the predicted SMILES strings that measures the similarity

between substructures within the given set of strings.

The above four measures capturing the performance of GO-PRO on the test-set of Jin’s

UPSTO dataset is summarized in Table 3.4.

Table 3.4: Results on the test set for Jin’s USPTO dataset computed using the top-1 predic-
tions

BLEU top-1 accuracy valid fraction similarity

93.2% 80.1% 99.0% 95.8%

In order to further understand the model performance on this dataset, the split of sim-

ilarity scores were computed for reactions in the dataset across three bins with similarity

scores of more than 0.95, 0.85, and 0.75, as presented in Table 3.5.

Table 3.5: Similarity scores on the test set for Jin’s USPTO dataset corresponding to the
top-1 predictions

similarity ≥ 0.95 similarity ≥ 0.85 similarity ≥ 0.75

84.4% 90.3% 93.4%

Based on the above results, a few conclusions about the efficiency of the proposed ap-

proach could be drawn. First, only 1% of the predicted reaction outcomes resulted in invalid

SMILES strings that could not be parsed by the given grammar. This indicates that the

transformer-model has learnt the underlying SMILES grammar almost with perfection from

the reaction encoding strategy. Second, the BLEU score and similarity values suggest that

the predicted products are very similar to the actual products of the reaction. This is not triv-

ial since the reactants, especially in organic chemistry reactions, often give rise to products

that are significantly different from each one of them after only a few elementary transfor-
2computed using the SequenceMatcher routine in python that matches the longest contiguous matching

sub-sequence that does not contain any unwanted (or junk) elements
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mations involving addition, substitution, and elimination reactions between different groups.

This is further established through Table 3.5 where the splits indicate that over 90% of the

predicted products share a similarity of more than 0.85 with the actual product. Third, the

top-1 accuracy of over 80% on the test set is indicative of the fact that the model has really

discovered the complex transformations occurring in chemical reactions subject to the reac-

tions conditions. A comparison of the model performance with human chemists presented in

the following section validates this claim.

3.4.2 Comparison with human organic chemists

In this section, the performance of our approach on the dataset of 80 reactions used for

benchmarking against human organic chemists used in [66] is reported. The test set contains

80 randomly chosen reactions from Jin’s USPTO dataset, 10 from each of the 8 category

of reaction templates, categorized based on their frequency of occurrence. The comparison

of the model accuracy with the average performance of the human chemists across various

reaction template bins is presented in Figure 3.11. The performance measures for the model

on this dataset are summarized in Table 3.6.

Figure 3.11: Prediction accuracy of the model and the average accuracy of human chemists
versus reaction template popularity
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Performance measure (in %)

BLEU 93.2

top-1 accuracy 72.9

valid fraction 100.0

similarity score 94.4

Table 3.6: Performance measures for model on the human chemists dataset

Clearly, the model outperforms the chemists for each of the reaction template bins with

100% prediction accuracies for the second and third categories of reaction templates. Even

for the increasingly rare reactions represented by the following bins, the model achieves an

accuracy of over 70% except for the last two bins where the performance is comparable

to the human chemists. Moreover, as is evident from Table 3.6, 100% of the predictions

made by GO-PRO on this dataset correspond to valid SMILES strings, again reinforcing the

advantages of a grammar ontology-based encoding strategy for reactions.

Figure 3.12 visualizes some of the incorrect predictions made by our model on this dataset.

It is observed that even when the predictions were inaccurate, the predicted products were

very similar to the actual product of the reaction – based on their structural forms in Figure

3.12 and also based on the BLEU and similarity scores from Table 3.6.
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Figure 3.12: Some of the reactions in the human chemists dataset that were predicted in-
correctly by our model. Even the incorrect predictions share a structure very similar to the
actual product of the reaction. The bin popularity along with the their frequency of appear-
ance in the database is indicated for each reaction.

3.4.3 Comparison with other works

The current state of the art model in the reaction prediction literature is the molecular

transformer model [47]. Though the overall accuracy obtained using our approach does not

outperform the best model, our model achieves an accuracy of over 80% just by using a frac-

tion of the training parameters characterizing the model used in other works. A comparison
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of the accuracies and the number of parameters characterizing the seq2seq model used in

other works is presented in Table 3.7.

Table 3.7: Comparison of accuracies (in %) reported in other works involving seq2seq models
using Jin’s USPTO dataset

Model # parameters top-1 top-2 top-3

Molecular transformer[47] 12 M 88.6 92.4 93.5

S2S [67] 30 M 80.3 84.7 86.2

GO-PRO3 5 M 80.1 86.3 88.7

Based on this, it is claimed that our grammar-based approach significantly aids the model

in learning transformations that occur in a chemical reaction by explicit incorporation of

the relationships between the constituent tokens in a SMILES string. A significantly fewer

number of parameters also inherently implies that the model does not have the capability

to memorize the entire training set and therefore, overcomes overfitting during the model

training stage – making it more robust and generalizable in practice. The following are the

advantages of using the proposed grammar-based representation for reaction prediction

• the grammar-based representation explicitly encodes the structural information for the

given molecule in a hierarchical manner with constituency relationships mapped be-

tween different components in the SMILES string. This is evident by the contrast-

ing parse-tree based grammar-representations (Figures 3.3 & 3.4) and their equivalent

character-based SMILES string representations described in the section Grammar for

SMILES.

• the proposed (more systematic) representation incurs less strain on the model (in terms

of number of training parameters) and consequently requires a significantly less complex

model architecture for modeling the underlying transformations in a chemical reaction,
3using only 3 reactants and 1 agent for predicting the major product of the reaction
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as seen through the results in Table 3.7 where the proposed model is characterized by

only a fraction of the training parameters in other works with comparable accuracies.

• owing to the grammar-based representation, the model learns to predict the product

based on the same grammar, and hence, the output SMILES strings are more likely to

be syntactically valid. This is validated by the results in Tables 4 & 6 which demon-

strate that 99% and 100% of the predictions made by our model (on the test set)

are syntactically valid which would have been unlikely without the model learning the

underlying grammar production rules.

It is imperative to note here that a relatively lower accuracy in our model could be at-

tributed to certain assumptions and approximations made during the model building stage.

First, the model was trained on only three reactants and one agent, discarding all the other

molecules involved in the reaction. Moreover, even among these four molecules, those that

were not in-grammar were dropped while encoding the reaction. Second, the SMILES gram-

mar that used here does not include metallic ions, certain metallic catalysts, and inorganic

elements, limiting the coverage of the training dataset. Third, molecules with representations

of over 300 were discarded and reactions were truncated if the left-hand side representation

was longer than 600. Owing to these limitations/approximations, the model is constrained

and has restrictive predictive capabilities that affects the prediction accuracies. However,

these could be overcome by relaxing these constraints which although does not result in

an increase in the model parameters, increases the model training time significantly due to

longer sequences.

3.5 Results: Retrosynthesis prediction

In this section, the performance of the trained models on the test set is presented. To

assess retrosynthesis prediction, the model evaluation metrics are first defined. Additionally,

the model performance is compared with other similar works in this field to benchmark
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its effectiveness. Finally, the advantages of our framework along with its limitations are

discussed.

Considering that a product may have multiple correct retrosynthesis pathways, not only

exact matches between predicted reactions and ground truth are considered, but also the

chemical similarity of precursor molecules. This evaluation is important because chemically

similar molecules are likely to produce feasible and correct reactions in practice. Therefore,

similarity-based metrics are incorporated to provide a more comprehensive and practical

assessment of the model’s performance.

To determine chemical similarity, the Tanimoto index, one of the most widely used and

reliable metrics for computing the structural similarity between molecules [68], is used. The

Tanimoto coefficient 𝑇𝑐 is a value ranging from 0 to 1, representing the fraction of com-

mon molecular fingerprints shared between two molecules. For two molecules 𝑋 and 𝑌 with

fingerprint sets 𝐴 and 𝐵 respectively, the Tanimoto coefficient is computed as:

𝑇𝑐 (𝑋,𝑌 ) =
𝐴 ∩ 𝐵

𝐴 + 𝐵 − 𝐴 ∩ 𝐵 .

A coefficient of zero implies that the molecules have no common fingerprints, while a coeffi-

cient of one indicates two identical molecules. Although no specific coefficient distinguishes

similar and dissimilar molecules, the commonly used threshold of 𝑇𝑐 = 0.85 for defining bioac-

tive similarity is adopted. In other words, two molecules are considered bioactively similar if

their Tanimoto score satisfies 0.85 ≤ 𝑇𝑐 ≤ 1.

3.5.1 Evaluation metrics

The following performance metrics to evaluate our models: accuracy, fractional accuracy,

MaxFrag accuracy, MaxFrag bioactive similarity rate (BASR), and invalid rate. Accuracy

measures the fraction of reactions in which the predicted precursor molecules perfectly match

the ground truth. Fractional accuracy measures the proportion of correctly predicted pre-

cursor molecules relative to the total number of ground truth precursors. MaxFrag accuracy
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represents the prediction accuracy of the maximal fragment, which corresponds to the longest

precursor molecule based on SMILES length. MaxFrag BASR quantifies the fraction of re-

actions where the predicted maximal fragment is bioactively similar (with a Tanimoto score

between 0.85 and 1) to the ground truth maximal fragment. Lastly, the invalid rate calculates

the percentage of syntactically or grammatically invalid SMILES predictions. A schematic

illustrating these metrics for an example molecule in the test-set is presented in Figure 3.13.

Figure 3.13: Top-3 predictions generated by our model for a given input molecule in the test-
set. The first (most likely) prediction matches the ground truth, the second is chemically
feasible but incorrect since it doesn’t exactly match the ground truth, and the third prediction
is chemically incorrect. All predictions are syntactically valid and have correctly predicted
the maximal fragment.

Based on the observations from the figure, it is noticed that a prediction is considered

incorrect if it does not exactly match the set of precursors in the ground truth, even if

it is chemically feasible. For example, the most likely prediction (prediction 1) matches the

ground truth precursors and is considered correct. However, the second most likely prediction

(prediction 2) contains a fluorine (F) instead of bromine (Br) for one of the precursors.

Although both elements are halogens and are chemically correct, the prediction is still deemed

incorrect when computing accuracy. As a result, the reported exact-match accuracy serves

as a conservative lower bound on the model’s performance. In practical scenarios, the actual

model performance is likely to be better than expected based solely on exact-match accuracy.
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3.5.2 Model performance

Table 3.8 presents the performance evaluation measures calculated on the test set of the

USPTO-50K dataset for both the known and unknown reaction class scenarios. Addition-

ally, the class-wise prediction accuracy and invalid rate for both known and unknown reaction

class scenarios are computed and shown in Figure 3.14 and Figure 3.15, respectively. This

granular evaluation provides insights into how the model performs in distinct reaction cate-

gories and in different reaction contexts. Note that the retrosynthesis prediction accuracies

for certain reaction classes – reaction class 3 (corresponding to C–C bond formation) and

class 4 (corresponding to heterocycle formation) are lower compared to other reaction classes.

This could possibly be attributed to the inherent complexity of such reactions in terms of

dependence on key reagents that determine reaction outcomes (and hence retrosynthesis) and

a wide array of reactions (for reaction class 3) that are grouped together in the same reac-

tion class – such as aldol reactions, Diels–Alder reaction, Grignard reaction, cross-coupling

reactions, the Michael reaction, the Wittig reaction, and so on. The combined effect of these

two factors could possibly be the reason behind relatively lower accuracy for reaction class

3. Similarly, for reaction class 4, lower prediction accuracy could be attributed to a lack of

enough training examples. The complete list of reaction classes and corresponding number

of examples in the train, validation, and test set are listed in Table 6.11 and corresponding

class-wise performance metrics in the supplementary information.
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Table 3.8: Retroynthesis models’ performance metrics on the test set

Performance measure top-k measure (%)

1 2 3 5 10

Known reaction class
Accuracy 51.0 64.3 70.0 74.6 79.1
Fractional accuracy 64.7 74.9 79.4 83.2 86.8
MaxFrag accuracy 60.6 71.6 76.5 80.4 84.1
MaxFrag BASR 74.8 82.2 85.4 88.3 92.3
Invalid rate 1.5 2.7 4.0 6.0 9.8

Unknown reaction class
Accuracy 41.6 54.0 60.4 67.6 73.1
Fractional accuracy 52.0 63.7 69.8 76.3 81.3
MaxFrag accuracy 49.0 60.5 66.5 72.7 77.8
MaxFrag BASR 60.0 70.8 76.4 82.2 86.8
Invalid rate 1.3 2.0 2.6 3.8 6.

3.5.3 Comparison with other works

In this section, the performance of our G-MATT model is benchmarked against other

transformer-based approaches reported in the literature. All models in the comparison are

trained and evaluated on the same USPTO-50K dataset used for training and evaluating

our model. To provide a comprehensive comparison, the top-k prediction accuracy and top-

k invalid rate are evaluated and presented in Table 3.9. Our findings demonstrate that for

both the known and unknown reaction class scenarios, the proposed G-MATT model achieves

nearly state-of-the-art performance in terms of prediction accuracy and invalid rate.

In the case of the known reaction class scenario, G-MATT’s top-k prediction accuracy is,

on average, only 4.3% lower than that of Lin et al.’s state-of-the-art model [71]. However,

G-MATT has an 1.25% improvement in invalid rate over Lin et al.’s model. Similarly, for

the unknown reaction class scenario, G-MATT’s top-k prediction accuracy is within 3.1% of

Lin et al.’s model, while outperforming it by 1.13% on the invalid rate. Additionally, when

compared to SCROP, which utilizes an additional transformer model to correct incorrect
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(a)

(b)

Figure 3.14: The class-wise top-1, top-3, top-5, and top-10 prediction accuracy (a) and invalid
SMILES string rate (b) for retrosynthesis prediction with known reaction class.

predictions made by a primary retrosynthesis transformer model, G-MATT, with its single

transformer architecture, outperforms the prediction accuracy for the unknown reaction class

scenario across several top-k values.

It is worth noting that G-MATT, despite its relative simplicity compared to other ap-
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(a)

(b)

Figure 3.15: The class-wise top-1, top-3, top-5, and top-10 prediction accuracy (a) and invalid
SMILES string rate (b) for retrosynthesis prediction with unknown reaction class.

proaches in the literature, achieves nearly state-of-the-art performance in terms of prediction

accuracy and invalid prediction rate. This can be attributed to several key characteristics

that distinguish G-MATT. Firstly, G-MATT benefits from richer input representations based

on SMILES grammar trees, as opposed to solely relying on linear SMILES strings. Secondly,
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Table 3.9: Comparison with other transformer-based retrosynthesis models trained on
USPTO-50K dataset

model top-k accuracy (%) top-k invalid rate (%)

1 3 5 10 1 3 5 10

Known reaction class
Liu et al. [69] 37.4 52.4 57.0 61.7 12.2 15.3 18.4 22.0
Grammar seq2seq [29] 43.8 57.2 61.4 66.6 4.4 7.2 8.4 9.6
SCROP [70] 59.0 74.8 78.1 81.1
Lin et al. [71] 54.3 74.1 79.2 84.4 2.3 4.9 7.0 12.1
T2T [72] 54.1 68.0 69.0 70.1
G-MATT (proposed) 51.0 70.0 74.6 79.1 1.5 4.0 6.0 9.8

Unknown reaction class
Liu et al. [69] 28.3 42.8 47.3 52.8
Grammar seq2seq [29] 32.1 44.3 48.9 54.0 5.1 7.4 8.4 9.7
Chen et al. [73] 39.1 62.5 69.1 74.5
Karpov et al. [51] 40.6 42.7 63.9 69.8
SCROP [70] 43.7 60.0 65.2 68.7 0.7 1.4 1.8 2.3
Lin et al. [71] 42.0 64.0 71.3 77.6 2.2 3.7 4.8 7.8
Tied two-way TF [54] 47.1 67.1 73.1 76.3 0.1 0.2 0.6 10.2
G-MATT (proposed) 41.6 60.4 67.6 73.1 1.3 2.6 3.8 6.3

the inclusion of tree positional encodings allows the model to accurately capture the hier-

archical structure present in the trees. Lastly, the use of tree convolution blocks within the

transformer architecture enables the model to attend to local molecular structures, such as

functional groups, thereby providing valuable contextual information. These factors collec-

tively contribute to G-MATT’s impressive performance.

While G-MATT already demonstrates competitive results, it is acknowledged that further

improvements are possible by incorporating additional model training strategies from prior

works in the literature. Our primary objective is not to pursue the state-of-the-art perfor-

mance, but rather to showcase the value of utilizing alternative SMILES grammar-based tree

representations for reaction prediction tasks. The effectiveness of G-MATT highlights the po-

tential benefits of considering underlying molecular structures and hierarchical information,

leading to improved performance in retrosynthesis prediction.
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3.5.4 Near-miss predictions

To further analyze the model’s performance, an analysis of incorrect predictions from a

chemistry standpoint is conducted. Specifically, the Tanimoto similarity of incorrectly pre-

dicted maximal fragment molecules with the ground truth is computed. Only the maximal

fragment is focused on since there are multiple molecules in the target reaction pathway. This

analysis provides us with insights into the degree of similarity between the incorrectly pre-

dicted precursors and the ground truth, which is important as chemically similar precursors

are likely to lead to feasible and accurate reactions in practice. Table 3.10 below presents the

percentile splits of incorrect predictions, categorized based on their Tanimoto similarities.

Model Tanimoto similarity (%) (incorrect predictions only)

0.5 ≤ 𝑇𝑐 0.7 ≤ 𝑇𝑐 0.85 ≤ 𝑇𝑐
Known reaction class 66.6 46.8 31.5

Unknown reaction class 78.8 63.7 48.7

Table 3.10: Distribution of Tanimoto coefficient scores across incorrect top-1 predictions for
both the models

3.5.5 Attention-map for molecules

To gain deeper insights into the grammar-based molecular representation, an analysis of

the attention weights computed by the attention sublayers is conducted. The cross-attention

modules in the decoder are used to calculate the average attention scores across all of them.

The resulting attention heatmap is showcased in Figure 3.16. Higher attention scores indicate

a more pronounced correlation between the corresponding tokens, signifying their greater

relevance in the translation process. This investigation demonstrates how the transformer

utilizes the grammar-based representation to identify molecular structures.

The attention mechanism exhibits high attention scores along the diagonal, indicating its

ability to correctly associate atoms and bonds in the input molecule with those in the pre-

cursor molecules during translation. For instance, Figure 3.16 illustrates an example reaction
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where the bond disconnection site is the N atom in the -N=O functional group. From the at-

tention map, it is observed that both aliphatic_organic → O and aliphatic_organic →

N have the highest attention scores for the ‘.’ token, which serves as the separator between

the precursor molecules. This confirms that the model has accurately identified the bond

disconnection site. This pattern is further validated through additional examples provided in

Appendix B where the bond disconnection sites – aliphatic_organic → S in Figure B.1

and aromatic_organic → c in Figure B.2 – have the highest attention scores with molecule

separate token. Furthermore, it is observed that atoms in the precursor molecules (horizontal

axis) often have high attention scores with multiple adjacent atoms or bonds in the corre-

sponding product (vertical axis), and vice versa. These findings strongly suggest that due to

the convolutional operations on the hierarchical tree representation, G-MATT considers the

context of neighboring atoms while making predictions and identifies the importance of local

structures within the molecules. This capability captures more comprehensive relationships

between atoms and bonds, improving the accuracy of predicted pathways.
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(a) An example top-1 prediction to study the transformer attention map

(b) Average attention scores for top-1 prediction on the retrosynthesis reaction
C=CCCOCC=NO → C=CCCOCC=O.NO extracted from the transformer decoder cross-attention
sublayer

Figure 3.16: Molecular attention map for the SMILES grammar tree of the product and
SMILES strings of the reactants (precursors) for an example reaction77



Another noteworthy observation is that G-MATT’s attention maps are generally sparse,

with several input tokens having relatively lower cross-attention scores. This sparsity in-

dicates the efficiency of the tree representation, which inherently imposes structure on the

tokens. Consequently, the model captures both the semantics and syntactical structure of

tokens, allowing it to focus on the most crucial tokens while resolving uncertainty during

predictions. The model can infer the remaining tokens from the structural constraints it has

learned. This ability to attend selectively to important tokens contributes to the model’s

performance despite its relatively low complexity. Additional cross-attention maps for the

G-MATT model are provided in the Appendix B.

3.6 Conclusions

For the forward prediction problem, an approach for exploiting the grammar underlying

the SMILES representation for molecules was presented. It was shown that grammar-based

representations offer several advantages inherent to the reaction prediction task. First, they

reduce the strain on the model training stage incurred while modeling relationships between

individual tokens in a text-based molecular representation (such as SMILES) by encoding

such relationships explicitly in the input and target sequences using the underlying grammar.

Second, they overcome over-parameterization in complex machine learning architectures typ-

ically used in the reaction prediction tasks as observed through the significantly reduced

number of training parameters in our proposed architecture. Third, such representations

ensure syntactic validity of the molecular representations predicted as outcomes of chemical

reactions, taking us a step closer towards constraining the model to predict synthesizable

molecules. The proposed approach resulted in 99.0% syntactic validity of the prediction with

an overall accuracy of 80.1% using a model characterized by 5M parameters. In contrast,

the current state of the art in reaction prediction achieves an accuracy of 88.6% using a

model characterized by 12M parameters, significantly higher than the number of parameters

used in our model. It was concluded that context-free grammars (CFGs) could be exploited
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to develop efficient representations for reaction prediction frameworks that encode reactions

hierarchically, reflecting the peculiar characteristics of molecular transformations inherent to

a chemical reaction. Moreover, the accuray could be further improved by implementing a

beam-search approach so that the ground truth could be compared against a set of possible

reaction outcomes. We therefore claim that ontologies that incorporate prior structured-

information about the constituents would significantly aid the machine learning models used

in such applications.

For the retrosynthesis prediction problem, a novel tree-based transformer architecture

was proposed, which represented molecular inputs as hierarchical trees instead of text-based

string representations. The developed tree transformer significantly improved upon previous

approaches in three key aspects. Firstly, the SMILES grammar was leveraged to represent

molecules, which lead to incorporation of explicit chemistry information to make the model

more domain-aware and robust. Secondly, tree positional encodings were introduced to in-

dicate the position of nodes in the grammar tree, thereby fully utilizing the tree hierarchy

structure and inherent structural relationships. Lastly, tree convolutions were employed,

providing nodes with progressively more contextual information. This context is important

in identifying molecular characteristics, such as functional groups or other local structures,

which might be ambiguous in the traditional SMILES string representation. Throughout

our experiments, it was demonstrated that explicitly incorporating the tree structure in the

transformer model takes full advantage of the benefits provided by a grammar-based tree

representation. This resulted in enhanced performance and a deeper understanding of the

underlying chemistry, making our tree-based transformer a promising approach for retrosyn-

thesis prediction.

In the known reaction class scenario, a top-1 prediction accuracy of 51.0% (top-10 ac-

curacy of 79.1%), fractional accuracy of 64.7%, and a syntactic invalid rate of 1.5%, was

achieved. The model performed similarly for the unknown reaction class case, achieving a

top-1 prediction accuracy of 41.6% (top-10 accuracy of 73.1%), fractional accuracy of 52.0%,
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and a syntactic invalid rate of 1.3%. The attention score visualizations provided insights into

the model’s robustness, as it accurately identified reaction centers, considered the surround-

ing context of atoms and bonds, and effectively learned structural constraints. Remarkably,

the G-MATT framework, despite its relative simplicity, attained nearly state-of-the-art per-

formance in terms of prediction accuracy and invalid rate.

Going forward, our focus for future work would be to incorporate additional reaction con-

ditions in the reaction prediction framework, address issues related to underrepresented reac-

tion classes during model training, and further bifurcate the reaction classes into more specific

reaction types would help in improving the model performance further. It is envisioned that

additional model training strategies, such as model weights averaging, customized learning

schedules, and exhaustive hyperparameter search, would lead to further improvements in

G-MATT’s performance. Moreover, performing multi-step retrosynthesis by combining our

single-step model with techniques such as Monte Carlo tree search would be another future

direction of research.
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Chapter 4: Chemical Flowsheet Representation and Generation

The increased availability of large data sets combined with relatively easy-to-use machine-

learning software has led to a plethora of purely machine-learning approaches that seem not

to exploit the vast domain knowledge that is already there [2, 5]. Such approaches are ap-

propriate for certain applications, such as vision, natural language processing (NLP), and

game-playing, where there are no conservation laws and first-principles-based knowledge to

leverage. Everything is in the data. Therefore, purely probability-based autocomplete tech-

niques are appropriate and successful in these applications. However, chemical engineering

processes, systems, and products are governed by fundamental laws, principles, and consti-

tutive relations, which are mostly known. Not using such a trove of information, particularly

for applications such as process flowsheet synthesis and design, seems not only inefficient

but can also lead to designs that are incorrect and/or unsafe. Purely data-driven techniques

mimicked from primarily big-data domains are not appropriate. On the other hand, our first-

principles knowledge can be leveraged and exploited to reduce the need for large amounts of

data. Thus, building hybrid AI models is more appropriate for many chemical engineering

applications.

Motivated by such considerations, a hybrid AI framework is developed for process flow-

sheet synthesis and design. The overall goal is to develop a flowsheet that enables the con-

version of input materials to desired output products efficiently, taking into account energy

consumption, environmental impact, safety, operability, and many more. This involves solv-

ing the flowsheet synthesis and design problems, either sequentially or simultaneously. The

synthesis problem involves identifying the underlying tasks, associated operations for each

task, and their sequence in the flowsheet. On the other hand, the design problem involves

determining the feasible and/or optimized operational and equipment details for the process

81



to be built and operated. Given the complexity of the problem, defined by the tasks and the

search space, efficient and intelligent approaches are required to generate sustainable optimal

solutions [3]. An essential step towards achieving this is an appropriate method for flowsheet

representation that contains the necessary and sufficient information.

There is a long and successful tradition in process engineering on the use of domain

knowledge for synthesis and design [74, 75, 76, 77, 78, 79]. This is built upon by augmenting

such techniques with AI. However, as argued by Mann et al. [40], such hybrid approaches,

irrespective of the applications, require efficient blending of domain concepts and theory with

machine learning to arrive at optimal solutions. Moreover, these hybrid AI-based models need

to further incorporate issues such as economics, environmental impact, operability, safety, and

sustainability in the early stages of process development [79].

Facilitating the development of a hybrid AI-based approach requires an appropriate flow-

sheet representation. The representation needs to be concise, complete, and accurate[40].

This further needs to be integrated with automated generation methods that are flexible to

incorporate domain knowledge and to allow the formulation of innovative process flowsheets

for a wide range of applications. The SFILES representations developed by [80, 81, 82]

was the first step in this direction and have been shown to have various applications such

as flowsheet autocompletion [83], piping and instrumentation diagram generation [84], and

flowsheet pattern mining [85]. However, these works exclude important flowsheet information

by building purely data-driven models based only on the information in the SFILES strings.

While such approaches using the text-based SMILES representation [14] for molecular gen-

eration [86, 87], reaction prediction [28, 47, 29], and property prediction [88, 89] have been

successful, it must be remembered that in these cases other background information is also

provided.

Just as in molecular representation, such as SMILES, where information on the number

and types of atoms and their bonds are needed, the relevant details to be considered for flow-

sheets are the number of chemicals and their paths within the system boundary, the process
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objectives and desired end goals of the flowsheet, constraints on process equipment, and so

on. Thus, the context of flowsheets constrained by mass and energy conservation, equipment

design factors, agreement with process design principles, energy efficiency, environmental im-

pact, recycling of unused reactants, and so on are essential to consider. Moreover, flowsheet

synthesis is different from process flow-diagram generation, where the latter only involves de-

picting a configuration of operations and their connectivity without the details that are nec-

essary for the generation of flowsheet alternatives in process simulation, design, and analysis.

Generating a process flowsheet (or even process flow diagrams) without taking into account

the flowsheet context is akin to automatically generating molecules starting with a ‘C-atom’

(carbon-atom) without specifying desired properties, structural constraints (valency rules),

desired molecular types, etc., leading to a practically infinite number of molecules, without

knowing if any of the molecules would match the desired set of constraints. To address such

drawbacks, here the computational benefits of AI/ML methods are combined with process

engineering domain knowledge to develop an intelligent, hybrid AI-based representation for

process synthesis and design.

In particular, a multi-level framework is presented for flowsheet representation and its use

for fast, efficient, and reliable flowsheet synthesis, design, and simulation. The framework

leverages established concepts and theories on process development and data-driven strategies

that could be deployed on any process flowsheet to extract likely processing route patterns.

The eSFILES representation is an extended SFILES representation that incorporates text-

based SFILES of process flowsheets [80, 81, 82], symbolic AI-based syntax rules (formal

grammar) similar to the SMILES grammar [28, 29], annotated hypergraph representation

[90] for representing flowsheet connectivity, and a process ontology for efficient knowledge

representation and its use.

The proposed representation comprises a base level (level 0) followed by three other

levels. The base level involves representing the process flow-diagram as purely text-based

representations. Level 1 involves flowsheet connectivity information, which is represented
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as flowsheet hypergraphs. Level 2 incorporates specifications related to the conservation

of mass and energy such as separation factors, reaction stoichiometry, and conversion rate,

needed for simple model-based process simulations. Finally, Level 3 contains additional

process operational specifications in terms of design parameters needed for rigorous process

simulation as well as options for process innovation through optimization and intensification.

Note that the data available through the hypergraphs at levels 1,2 & 3 also serve as input

to tools for process simulation, synthesis, and design. After the solution of any problem, the

results are added to the corresponding hypergraph level so they can serve as a repository of

all information of a specific process flowsheet. That is, flowsheet alternatives are generated

for a given process objective by combining available or generated process knowledge and

appropriate computational techniques [79, 82].

4.1 Motivation and framework

4.1.1 Motivation

Process creation involving simulation-based synthesis, design, and analysis could be per-

formed efficiently, reliably, and rapidly through a decomposition of the problem into three

stages and a hierarchical work-flow of the calculation steps supported by their corresponding

data flow (Tula et al [79], Seider et al. [91]). The three stages are synthesis (including the

generation of process flow diagrams), design (including analysis to verify that the base case

design delivers the desired products), and innovation (including generation and analysis of

alternatives that are better than the base case design). The final process flowsheet, after

creation, contains vast amounts of information related to process streams; equipment design

and operation parameters; connectivity between operations through streams; various input,

output, recycle, and linked streams; efficiency of process equipment; and so on. However,

only a subset of this information is required for the tasks related to the synthesis stage,

while tasks related to the design stage require additional data for tasks such as fast mass

and energy balance calculations with simple models or detailed equipment and operational
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parameters for rigorous simulation, or equipment sizing and cost data for economic analysis.

An important question is how to provide the necessary data for all stages and also when and

how the necessary data could be obtained.

Based on the above discussion, it is desirable to have a universal flowsheet representation

that is both efficient in organizing flowsheet information and also mathematically tractable

for use in conjunction with existing methods and tools for process synthesis, design, and

simulation through consistent and efficient data transfer between system components. That

is, a computer-aided system (framework) is needed that combines AI techniques (such as

flowsheet hypergraph enumeration, formal flowsheet grammar representation, and process

ontologies-based inference) with domain knowledge related to process synthesis ([74, 77]),

process design ([75]) and process simulation (Seider et al. [91]) into an intelligent, flexible and

consistent framework for process flowsheet representation that can be used for a wide range

of problem solutions. The flowsheet representation system should be able to handle different

contexts for tasks such as flow-diagram generation, process design, or process simulation.

Available domain knowledge and details of the models used at each stage provide the list of

data that needs to be included in flowsheet representations for each stage.

4.1.2 Framework

The basic structure of a proposed intelligent and versatile framework for multi-level flow-

sheet representation and its links to tools for the solution of various flowsheet synthesis,

design, and simulation problems is presented in Figure 4.1. This framework meets the re-

quirements of process creation as described above in section 2.1. The objective of this frame-

work is to efficiently organize the flowsheet information at three distinct levels plus a base

level 0, each capturing increasingly more context about the process. As shown in Figure 1,

the flowsheet representation at each level is linked to a set of tools that use the information

as input to solve the associated problem. The problem solution results are also added to the

corresponding level flowsheet representation.
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Figure 4.1: An overview of the developed multi-level flowsheet representation and generation
framework [92]

The framework highlighted in Figure 1 is based on symbolic formalism (SFILES grammar,

ontology) and mathematical objects (hypergraphs) that allow for flowsheet representation at

a given level to be integrated directly with existing methods for process synthesis and/or

design, thus aiding in the development of hybrid AI models rooted in domain knowledge as

listed in Table 4.1. This multi-level framework is called eSFILES because it is based on the

SFILES representation of the original process flowsheet.

The base level (level 0) requires a concise, text-based flowsheet representation capturing

information from process flow diagrams and should be useful for efficient flowsheet storage,

sharing, and search. It is proposed to use the concept of SFILES [80, 81] for this level. The

goal of level 1 representation is to explicitly capture the flowsheet connectivity information

so that options for flowsheet generation can be selected. It is proposed to use graph-theoretic

objects such as annotated hypergraphs ([90]) where process streams are represented as nodes

and process operations as hyperedges. The flowsheet hypergraphs, owing to their graph-

theoretic nature, allow for applications of numeric techniques for model-based simulations,

superstructure enumeration, as well as visualization. The objective of level 2 is to include

additional information on process operational parameters such as reaction stoichiometry, con-
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version, separation factors, and purge factors that are typically used in simple model-based

process simulation. The goal of level 3 is to provide design and operation parameters such

as reactor operating conditions, distillation column number of stages, and feed stage loca-

tion; heat exchanger driving forces that are typically used in rigorous model-based process

simulation. Using hypergraphs with node-edge annotations allow for a two-way transfer of

data between the representation and the corresponding linked tools, as highlighted in Figure

1. The large amount of data in level 3 representation is handled through process ontology

that hierarchically organizes design and operations parameters associated with each process

operation using class/subclass/properties. Note that as described above, the eSFILES frame-

work integrates concepts from graph theory, ontologies, and natural language grammar with

well-known methods for process synthesis, design, and simulation.

Table 4.1: Various hybrid AI applications enabled by the developed multi-level flowsheet
representation and generation framework

Level Applications Numeric ML techniques

Level 0: SFILES strings text-based flowsheet representa-
tion; flowsheet storage, sharing,
and search

sequence modeling frameworks;
text-mining; pattern identifica-
tion

Level 1: flowsheet hypergraph process alternatives hypergraph-based flowsheet enu-
meration; validation checks; su-
perstructure generation

Level 2: annotated flowsheet hy-
pergraph

process intensification; flowsheet
property prediction

heuristics-based graph traversal;
ML and GC-based property pre-
diction

Level 3: hypergraph connected
with process ontology

flowsheet simulation and opti-
mization

integration with commercial sim-
ulation tools; graphical methods
for optimization

4.2 Basic concepts

In this section, an overview of the background methods required for constructing the eS-

FILES -based representation of process flowsheets at various levels of complexity is provided.

For consistency and easier comprehension, without loss of generality, the methods and the

eSFILES -based representation (eSFILES framework) are explained using the well-known
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hydrodealkylation (HDA) process [75] used for the production of benzene and biphenyl from

toluene and hydrogen. The HDA process is used since it has complexity, involving simul-

taneous reactions, multiple separation tasks and their corresponding separation techniques,

and the presence of an inert compound that needs to be purged and recycled of unreacted

materials.

Figure 4.2: The HDA process flow diagram [75]

In the HDA process shown in Figure 4.2, a stream [AD] of hydrogen (A) and methane

(D) and a stream [C] of toluene (C) is fed to the reactor where toluene reacts with hydrogen

to produce benzene (B) and methane (D). A side reaction results in benzene converting to

biphenyl (E) and hydrogen. Throughout this paper, a ’[ ]’ will represent a stream, and a ’(

)’ will represent one or more chemicals.

𝑇𝑜𝑙𝑢𝑒𝑛𝑒 (𝐶) + 𝐻2 (𝐴) −→ 𝐵𝑒𝑛𝑧𝑒𝑛𝑒 (𝐵) + 𝑀𝑒𝑡ℎ𝑎𝑛𝑒 (𝐷)

2 𝐵𝑒𝑛𝑧𝑒𝑛𝑒 (𝐵) ⇌ 𝐵𝑖𝑝ℎ𝑒𝑛𝑦𝑙 (𝐸) + 𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 (𝐴)

The reactor outlet stream [ADCBE] containing the products, as well as the unconverted

reactants and the inert compound, is fed to a flash unit that separates the feed stream into a

top product stream [AD] and a bottom product stream [ADCBE]. The product stream [AD] is

sent to a purge unit that splits the feed into a purge stream [AD] and a recycled stream [AD].
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The bottom product stream of the flash unit is sent to the first unit of a three-distillation

column separation train from which the main product stream [B], the side product [E], and

the unconverted reactants (AD) and (C) are obtained. The following sections explain the

underlying methods associated with the eSFILES -based process flowsheet representation.

Remark 1: For the HDA process shown in Figure 4.2, the following two assumptions

are made– first, the product streams are represented as a single chemical product. It may

include impurities, which are added at the design and simulation levels. Second, in the case of

reactants with inert chemicals, the corresponding streams are represented as mixed streams

(such as AD, hydrogen, and methane), which are purged and also recycled.

4.2.1 eSFILES -based flowsheet representation

Inspired by the simplified molecular input line entry scheme (or SMILES) representation

[14], an analogous text-based representation for flowsheets was developed by [80, 82, 81].

The simplified flowsheet-input line-entry scheme (or SFILES) represents flow diagrams con-

taining streams and unit operations as a single-line text representation. This representation

involves representing the various unit operations as ‘process-atoms’ analogous to atoms in

a molecular representation, the linked streams as ‘process-bonds’ analogous to bonds link-

ing atoms in molecular representations, and the various input, output, and recycle streams

as process-bonds with special symbols. The same version of SMILES, as proposed by [80,

82], is primarily worked with, but it is extended to include additional process-atoms such

as dividers, purge, and recycle.For the HDA process shown in Figure 4.2, the corresponding

process-atoms signifying different unit operations in the process flow diagrams are shown in

Figure 4.3a and the corresponding text-based SFILES representation is shown in Figure 4.3b.
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(a) Illustration of the HDA process flowsheet represented by process-atoms and process-bonds

(b) Text-based SFILES representation for the HDA process

The various aspects of the SFILES notation and associated symbols are explained below:

• Similar to SMILES, the SFILES strings are read from left to right

• Process-atoms representing unit operations for specific tasks (reactor, distillation, di-

vider, etc.) in the flowsheet are delimited by parenthesis. Hence, the process-atoms in

Figure 4.3a are represented as

– reactor (rADC/ADCBE): ‘r’ indicates the process-atom type, ‘ADC’ indicates the

inlet stream containing the compounds, A, D (inert) and C, ‘/’ symbol to separate

reactants from products, ‘ADCBE’ indicates the reactor effluent stream. Note the

reactor effluent ‘ADCBE’ is a linked process-bond that connects the reactor to its

first downstream process-atom.

– flash (fAD/ADCBE): ‘f’ indicates flash, ‘AD’ before the symbol ‘/’ indicates the

top product, and ‘ADCBE’ indicates the bottom product. Note that the input
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stream for the flash is a linked process-bond, for example, the reactor effluent

connected to the flash unit.

– distillation (dAD/CBE): ‘d’ indicates distillation, ‘AD’ before the symbol ‘/’ indi-

cates the top product, and ‘CBE’ indicates the bottom product. Note that, as in

the flash unit, the input stream for the distillation is also a linked process-bond,

for example, the bottom product stream linking the flash and the distillation.

– purge or divider (prgAD/AD): ‘prg’ indicates a purge unit, and the two divided

streams are [AD] with different symbols, ‘o’ indicating a product (purge) stream

and a ‘1’ indicating recycle stream 1.

• Two consecutive process-atoms represent a connection (process-bond) from the first

process-atom to the second process-group. For instance, (iAD)(rADCB/ADCBE) rep-

resents an inlet process-atom connected to a reactor process-atom.

• Branches are represented by square brackets (‘[’, ‘]’) and the ‘<’ symbol is used to specify

a recycle stream. Thus, [(<iC)] indicates that the process-atom (iC) is connected as

inlet to the reactor process-atom (instead of the outlet).

• Recycles in the flowsheet are represented by numbers, one for each recycle loop present.

For example, consider (prgAD/AD)1(oAD) in the above example. The number 1 here

indicates that an outlet of the purge process-atom (prgAD/AD) is connected to the

inlet of the reactor process-atom (rADCB/ADCBE) (due to the presence of ‘<1’ after

the reactor), whereas the other outlet is connected to (oAD) process-atom indicating it

exits the flowsheet. Intelligence is added to this level so that reactants after a reaction

is identified and marked for possible recycling.

Additional details and examples are given in references [80, 82], while Section 4.2.2 gives the

specially developed SFILES grammar that formalizes the notation using formal syntax rules.
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4.2.2 SFILES grammar syntax rules

Since the SFILES representation is a novel and alternate way of representing process

flow diagrams, this representation system is formalized with a specially developed SFILES

grammar (similar to SMILES [14]) based on grammar formally defined by Chomsky [55],

which consists of the following elements:

• S, a designated start symbol

• Σ, the set of terminal symbols

• N, the set of non-terminal (intermediate) symbols

• and R, the set of syntax rules of the form A −→ 𝛽 where A ∈ N is non-terminal and

𝛽 ∈ Σ is a terminal symbol

The SFILES grammar syntax rules are, therefore, a formal description of the SFILES-

based flow-diagram representation system and could be used for generating hierarchical trees

that represent the grammatical structure of SFILES strings. These SFILES grammar trees

could then be used to automatically infer process context such as – process-atoms (unit op-

erations), process-bonds (input, output, recycle, intermediate), and associated connectivity

between process-atoms and process-bonds. Moreover, the SFILES grammar syntax rules are

also useful for identifying syntactically invalid SFILES strings – for a given SFILES string,

if the corresponding grammar tree could not be generated, then the given SFILES string

has incorrect syntax (just like invalid English sentences do not have a correct grammati-

cal structure). Therefore, the SFILES grammar is developed with the primary purpose of

automatically converting SFILES string to their connected hypergraph representation (see

Section 4.2.3) in a process context-aware manner.

For instance, consider a simplified process flow diagram (see Figure 4.4a) with an inlet

stream, a reactive flash unit where complete conversion of reactant A to products B and C

takes place, and two outlet streams (with products B and C), represented by the SFILES
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notation in Figure 4.4b, and the corresponding SFILES grammar tree shown in Figure 4.4c.

Additional examples of grammar trees of process flow diagrams are given in Appendix D.

(a) Illustration of a reactive flash process flow diagram

(b) Text-based SFILES representation for the reactive flash process shown above

(c) Hierarchical grammar tree corresponding to the SFILES string obtained using grammar syntax
rules in Table 4.2 (different process-atoms are highlighted in different colors)

This top-down, hierarchical grammar tree shows the gram-

matical structure for representing the SFILES string characters

{ (, i, A, ), r, A, /, B, C, ), (, o, B, ), (, o, C, )} as the leaf nodes

(or terminal nodes) of the grammar tree. The top node (SFILES) indicates that the grammar

tree corresponds to the SFILES representation of the given process flow diagram. The inter-

mediate (nonterminal) nodes { PG, PA, INLET, EQUIPMENT, REACTOR, OUTLET, ...}

represent the broad category of symbols used to represent various sub-components of the

SFILES string (just like in English language noun phrase, verb phrase, adjective, etc.
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represent various sub-components of a sentence). For instance, PG represents a process group

that consists of one or more process-atoms. A process-atom PA could be an INLET repre-

senting flowsheet input streams, OUTLET representing flowsheet output streams, EQUIPMENT

representing process equipment such as a REACTOR, and so on for other components in a

process flow diagram. The grammar syntax rules listed in Table 4.2 define how they could be

applied to an intermediate symbol (left-hand side of the rule) to subdivide (or transform) it

into a new set of symbols (intermediate or terminal) on the right-hand side. The equivalent

symbols characterizing the grammar syntax rules, along with their meaning, are listed in

Table 4.3. A more comprehensive list of developed SFILES grammar syntax rules, but not

a complete set, is given in Appendix C.

In the grammar tree, for example, the one shown in Figure 4.4c, the top node SFILES

is subdivided using grammar syntax rule 𝑅1 : SFILES −→ PG, into PG. On PG, the gram-

mar rule 𝑅2 : PG −→ PA PG is applied to create two horizontal branches with PA as the

left intermediate node and PG as the right intermediate node. On the left non-terminal

node PA, grammar rule 𝑅6 : PA −→ INLET is applied, and further, on INLET grammar rule

𝑅8 : INLET −→ BRAC1 INLETmark STREAM BRAC2 is applied to generate four intermediate

nodes that will be used for representing a flowsheet inlet stream. Finally, on INLETmark,

grammar rule 𝑅24 : INLETmark −→ ‘i’ is applied to get the terminal symbol ‘i’; on

BRAC1 rule 𝑅20 : BRAC1 −→ ‘(’ is applied to get the terminal symbol ‘(’; on STREAM rules

𝑅15 : STREAM −→ MAT and 𝑅17 : MAT −→ ‘A’ are applied to get the terminal symbol ‘A’

representing the material in the input stream; and on BRAC2 rule 𝑅21 : BRAC2 −→ ‘)’ is

applied to get the terminal symbol ‘)’. The end-point (leaf or terminal node at the bottom

level of the tree) is reached when on the right-hand side, only terminal nodes are encountered.

In this way, the SFILES grammar syntax rules listed in Table 4.2 could be applied to each

of the intermediate symbols until terminal symbols representing characters in the SFILES

string are encountered. If there are multiple nodes (intermediate or terminal) that could be

used on the right-hand side of a rule, then alternative flow diagrams are generated.
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Table 4.2: Example of SFILES grammar. The complete set of rules is listed in Appendix C.

Rule Grammar rules Meaning/explanation

𝑅1 SFILES −→ PG top node transforming into an interme-

diate node (process group PG)

𝑅2 PG −→ PA PG process group PG transforming into one

or more process-atoms (PA) and more

PG

𝑅3 PG −→ PA PG transforming only to one PA

𝑅4 PA −→ BRAC1 PA BRAC2 PA enclosed in parentheses

𝑅5 PA −→ EQUIPMENT PA that is a process equipment

𝑅6 PA −→ INLET PA that is an inlet stream

𝑅7 PA −→ OUTLET PA that is an outlet stream

𝑅8 INLET −→ BRAC1 INLETmark STREAM BRAC2 flowsheet inlet stream represented as

inlet-mark followed by stream process-

atom enclosed in parentheses

𝑅9 OUTLET −→ BRAC1 OUTLETmark STREAM BRAC2 flowsheet outlet stream as outlet-mark

followed by stream process-atom in

parentheses

𝑅10 EQUIPMENT −→ REACTOR equipment that is a reactor

𝑅11 EQUIPMENT −→ SEP equipment that is a separator

𝑅12 REACTOR −→ REACTANTmark REACTANT BCKSLSH PRODUCTreactor as reactant-mark, reactant,

backslash, product

𝑅13 REACTANT −→ STREAM reactant stream

𝑅14 PRODUCT −→ STREAM product stream

𝑅15 STREAM −→ MAT stream with a single material

𝑅16 STREAM −→ MAT STREAM a recursive rule that allows a process

stream to contain more than one mate-

rial

𝑅17 MAT −→ ’A’ material containing A

𝑅18 MAT −→ ’B’ material containing B
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Table 4.2: Example of SFILES grammar. The complete set of rules is listed in Appendix C.

Rule Grammar rules Meaning/explanation

𝑅19 MAT −→ ’C’ material containing C

𝑅20 BRAC1 −→ ’(’ opening parentheses

𝑅21 BRAC2 −→ ’)’ closing parentheses

𝑅22 BCKSLSH −→ ’/’ backslash symbol

𝑅23 REACTANTmark −→ ’r’ reactant-mark

𝑅24 INLETmark −→ ’i’ inlet-mark

𝑅25 OUTLETmark −→ ’o’ outlet-mark

NOTE: PG here refers to process-groups, a combination of one or more process-atoms (PAs) and has

been introduced to enforce a hierarchy in the grammar rules.

Table 4.3: List of symbols in the grammar rules listed in Table 4.2

Type Grammar symbols Description

S SFILES the top node in the SFILES grammar tree representing

SFILES flowsheet representation.

Σ A, B, C, <, r, /, (, ), i, o Leaf (or terminal) nodes in the SFILES grammar tree rep-

resenting the list of valid symbols in the SFILES vocabu-

lary.

N PG, INLET, OUTLET,

EQUIPMENT, REACTOR,

REACTANT, PRODUCT,

STREAM, MAT

The intermediate (or non-terminal) nodes in the SFILES

grammar tree that represent a broad categorization of sub-

components in the SFILES strings. For instance, ‘PA’ rep-

resents all the process-atoms whereas ‘REACTOR’ represents

all reactor process-atoms.

R {𝑅𝑖}25𝑖=1 set of grammar rules {𝑅𝑖}25𝑖=1 listed in each row in Table

4.2. In total, there are 25 distinct grammar syntax rules

in the subset of SFILES grammar listed in Table 4.2.
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The proposed SFILES grammar allows automated parsing of SFILES strings in databases

(or as input flowsheet) to check for syntax validity, inferring structural information embedded

in the SFILES representation, inferring connectivity information between process-atoms and

various process-bonds (input, output, recycle, intermediate), and to generate alternative but

valid process flowsheets by enforcing syntactic constraints. Note here that the grammar syn-

tax rules are developed based on process knowledge underlying process flowsheets factoring

in flowsheet context and not merely extracted from purely data-driven pattern extraction

methods.

4.2.3 Flowsheet hypergraph

Flowsheet synthesis and design typically involves identifying a set of design variables for

which optimal values are determined through, for example, simulation-based optimization

techniques [78]. That is, the locations of the design variables on the flowsheet and their val-

ues are needed for the process simulation step. The eSFILES representation can easily add

the necessary information data through the concept of the flowsheet hypergraph. A combi-

nation of a process ontology (see Section 4.2.4) for structuring the knowledge related to the

design-decision variables in process flowsheets and a method for their contextual mathemat-

ical representation is applied. Such a representation should have the ability to capture the

connectivity information as well as the associated contextual information between various

process-atom-stream pairs. Thus, a process flowsheet is represented as a hypergraph with

node-edge annotations where the nodes represent streams, edges (or hyperedges) represent

process-atoms, and the node-edge annotations capture relevant contextual information. This

is similar to the reaction hypergraph representation proposed by Mann and Venkatasubrama-

nian [90] for studying reaction network statistics. Note that a combination of process-atoms

(hyperedges) and associated process-bonds( streams) is referred to as a process-group con-

taining multiple process-atoms. While it is possible to create flowsheet hypergraphs the other

way around – nodes representing process-atoms and hyperedges representing process streams
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– such a representation would not allow for leveraging the benefits of hypergraphs (hyper-

edges connecting multiple nodes together) to the fullest extent. This is because flowsheets

where the exact same stream (hyperedge) enters multiple process-atoms (nodes) at the same

time are not usually encountered, whereas it is often seen that multiple streams (nodes)

enter the same process-atom (hyperedge) and hence, the latter representation is chosen for

generating flowsheet hypergraphs. Nevertheless, the two representations could be converted

to each other using the duality property of hypergraphs [90].

Though flowsheets have been represented as di-graphs in previous works, our work is a new

attempt to represent process flowsheets using hypergraphs with annotations. Hypergraphs

are more concise representations since a single hyperedge could connect multiple nodes as

opposed to a graph that introduces additional edges for connectivity between more than two

nodes [90]. The node-edge pair annotations, in addition, offer flexibility in terms of capturing

additional information associated with process-atoms-streams pairs.

Mathematically, a hypergraph is a pair 𝐻 = (𝑉, 𝐸) where 𝑉 is a set of vertices and 𝐸 is the

set of edges (or hyperedges) where each edge contains a non-empty subset of 𝑉 . A hypergraph

with annotations is defined as 𝐻 = (𝑉, 𝐸, 𝑋, 𝑙) where 𝑉 is the set of vertices, 𝐸 is a set of

edges, 𝑋 is a finite label set containing the possible set of labels (or annotations/roles), and

𝑙 is a role labeling function for assigning roles to each hyperedge-node pair as 𝑙 (𝑣, 𝑒) = 𝑥.

For representing directionality, 𝑋 = {’in,’ ‘out’} labels could be used since the direction of

the flow of materials is important for a chemical flowsheet. For the HDA process and its

corresponding hypergraph containing the following

• streams represented as vertices, 𝑉 = {C, AD, ADCBE, AD, CBE, CE, C, E, B}

• process-atoms represented as hyperedges, E, connecting input and output streams,

𝐸 = {R1, F1, D1, D2, D3}

• node-edge role labels, {‘in’, ‘out’} shown as directed arrows for brevity

is shown in Figure 4.5. The hypergraph representation is a mathematical representation and
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allows for each manipulation using numeric methods as opposed to a simple process flow

diagram shown in Figure 4.2.

Figure 4.5: HDA process hypergraph with streams as vertices and process-atoms as hyper-
edges. The asterisk symbol (*) for streams ‘AD’ and ‘C’ indicates that they are raw input
streams to the process.

4.2.4 Process ontology

To perform a simulation of a process flowsheet, much more information is needed about

the process-atoms and streams, such as design and operation parameters, than those given

in a typical process flow diagram or its corresponding SFILES string. This information is

necessary for representing flowsheets at levels 2 (for simple model-based simulation) and level

3 (for rigorous model-based simulation) within the eSFILES framework, whose applications

are highlighted in Section 4.3. However, an ontology is required since the design and op-

eration parameters required for process simulation vary across operation and stream types

within process flowsheets. Note that an ontology is a formal description of the knowledge and

concepts of a domain and is a hierarchical organization of the concepts as class-subclass rela-

tionships. That is, it organizes the information hierarchically and semantically, capturing the

class-subclass relationships that often characterize process design and operation information.
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A snapshot of the developed process ontology is shown in Figure 4.6.

Figure 4.6: Developed process ontology to represent operation and design parameters required
for rigorous flowsheet simulation.

In the developed ontology, at the highest level (main class) resides the ‘process-atom’,

which maps uniquely to one of the edges in the flowsheet hypergraph shown in Figure 4.5.

• The ‘process-atom’ class has two sub-classes, ‘operation’ and ‘design,’ corresponding to

operation and design information, respectively, for the given process-atom.

• The ‘operation’ has ‘stream’ as its subclass which further has all the incoming and out-

going streams as sub-classes along with their material and energy balance parameters

stored as properties (indicated with blue arrows in Figure 4.6).

• On the other hand, the ‘design’ class has ‘reactor’, ‘separator’ (represents flash, distil-

lation, pervaporation, and so on), ‘divider’, and ‘comp/pump/hex’ as sub-classes for

storing design information corresponding to the relevant equipment corresponding to

‘process-atom’.

100



• The associated design parameters are linked to these classes through properties (indi-

cated by blue arrows) similar to the ’stream’ class under ’operation’.

• Note that after populating the ontology with relevant data (called instances or frames)

for each class, the population ontology could be connected with a flowsheet hypergraph

by mapping the hyperedges to their respective process-atom classes in the ontology.

For a given chemical process flowsheet, various instances (or frames) of this ontology could

be used to represent information required for storing information relevant to the specific

process simulation performed. The instantiated ontology is shown for the HDA process in

Figure 4.10 in Section 4.3.

4.3 eSFILES hierarchical framework: Description and Application

The eSFILES representation incorporated into an eSFILES hierarchical framework to-

gether with its application in flowsheet generation, simulation, and design is presented in

this section. An overview of the eSFILES hierarchical framework is shown in Figure 4.7 and

a schematic showing all levels in detail is shown in Figure ??. At the bottom level or the

base of the eSFILES representation resides the text-based representation of flowsheets which

is the most concise representation of information in a process flow diagram. The SFILES

representation is similar to the SMILES representation for molecules and requires identifica-

tion of ‘process-atoms’ and their connectivity information for writing SFILES strings for a

given process flowsheet. At level 1, the flowsheet is represented as a hypergraph that shows

connectivity between streams and processes explicitly, where the ‘process-atoms’ are repre-

sented as hyperedges and streams are represented as nodes. This hypergraph is generated

automatically by first parsing the SFILES string for a process using the SFILES grammar

and then performing inference on the SFILES grammar parse tree to identify connectivity

patterns and generate a process flowsheet hypergraph. At level 2, additional information on

material and energy balance is added to the hypergraph as node-edge annotations, indicat-
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ing the appropriate material/energy balance data for each node (stream) in a process (edge),

thus making it complete for performing simple process calculations. At the highest level

at level 3, all design and operation information necessary for the simulation of the process

flowsheet using commercial process simulators like AVEVA Pro II and AspenPlus is added

to the hypergraph using a process ontology. Each hyperedge (process-atom) is connected

to a corresponding instantiated process ontology containing the necessary information for

simulation.

While describing the framework, at each level, descriptions of what constitutes the frame-

work, the relevant problem applications, and information required for traversing across levels

is provided. The reader is suggested to refer to the methods and background information

in Section 4.2 to gain a clear understanding of the eSFILES hierarchical framework and the

mathematical techniques underlying the framework.

4.3.1 Flowsheet representation

A brief overview of the eSFILES hierarchical framework for flowsheet representation is

shown in Figure 4.7.
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Figure 4.7: The multi-level eSFILES representation framework for the HDA process [92]

eSFILES representation at Level 0

At the lowest level, the eSFILES representation includes the text-based representation of

flow diagrams that contains information on the various process-atoms, streams, materials, and

connectivity information embedded in the single-line representation. For the HDA process

in Figure 4.2, the eSFILES L0 representation is given in Figure 4.3b.

The input and output associated with eSFILES level 0 representation are listed in Table

4.4.

Table 4.4: eSFILES level 0 representation input and output

Level 0

Input process-atoms connectivity through process-bonds

Output SFILES strings
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Input The input required for generating eSFILES level 0 representation of flowsheets is

the identification of process-atoms along with their associated process-bonds and connectivity

patterns.

Output The output, which is a purely text-based representation of flowsheets has several

uses including efficient information storage, sharing, and retrieval; deep learning frameworks

for manipulation of flowsheet strings just like SMILES manipulation for molecular generation;

flowsheet property prediction purely based on the underlying process-atoms and process-

bonds, and so on.

eSFILES representation at Level 1

Level 1 of the eSFILES hierarchical framework includes the flowsheet hypergraph

where vertices represent process-bonds (representing process streams), hyperedges repre-

sent process-atoms, and the directed connections represent the flowsheet connectivity ex-

plicitly. The eSFILES level 1 representation performs an explicit grammar check to identify

syntactically incorrect process flowsheets; the hypergraph provides a flexible mathematical

hypergraph representation that could be manipulated using numerical methods to perform

flowsheet enumeration, and superstructure generation, and used in conjunction with machine

learning models. In addition, to allow for schematic visualization of the process using the

hypergraph, and hence expanding the use cases of eSFILES level 1, streams are color-coded

to differentiate between various stream types – raw input streams are shown in blue, linked

stream are shown without color, recycle streams are shown in yellow, and output streams

are shown in red. Moreover, the node and hyperedges are named to indicate the underlying

streams (process-bonds) and unit operations (process-atoms), respectively. The eSFILES

level 1 representation for the HDA process is shown in Figure 4.8 below.
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Figure 4.8: eSFILES level 1 representation for the HDA process

The input and output associated with eSFILES level 1 representation are listed in Table

4.5.

Table 4.5: eSFILES level 1 representation input and output

Level 1

Input SFILES string SFILES grammar Inference algorithms

Task represent connectivity information

Output flowsheet hypergraph

Input The input required for generating eSFILES level 1 is the eSFILES level 0, inferencing

algorithms, and the SFILES grammar syntax rules described in Section 4.2.2 (in Table 4.2).

Output The SFILES grammar rules are used to parse the eSFILES level 0 representation to

generate a hierarchical organization of the meta information about process-atoms and streams

comprising the flowsheet. This hierarchical tree structure combined with connectivity-

inferencing algorithms (using grammar parse trees) are then used to generate a flowsheet

hypergraph depicting the underlying chemical process.
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eSFILES representation at Level 2

At level 2 in the eSFILES hierarchical framework resides an annotated hypergraph rep-

resentation with information necessary for performing mass and energy balance calculations.

Recall from Section 4.2.3 that the hypergraph representation allows for node-edge specific

labels (or annotations) that allow for storing additional contextual information specific to

the process. This flexibility of the developed hypergraph representation is leveraged to store

information on material compositions, stream temperature and pressures, reactor conversion,

separation factors, divider fraction, and so on. The eSFILES level 2 representation for the

HDA process in shown in Figure 4.9 below.

Figure 4.9: eSFILES level 2 representation for the HDA process

In the above representation, the symbols 𝑚𝑖, 𝑋 𝑗 , 𝛼 𝑗 , ¯𝑆𝐹𝑗 , ¯𝐷𝐹𝑗 , 𝑒 are vectors of appropriate

dimensions based on the number of components in the stream that need to be defined. To

perform mass balance calculations using simple models [91, 79], 𝑚𝑖, 𝑋 𝑗 , 𝛼 𝑗 , ¯𝑆𝐹𝑗 , ¯𝐷𝐹𝑗 are the

set of variables that are needed since they could be used to compute component flow for

each stream. For energy balance, 𝑒 could be tracked along a given hyperedge and if its value
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changes along the same hyperedge or vertex, it indicates the presence of a heat exchanger,

pump, or compressor based on the change in temperature or pressure variables.

The input and output associated with eSFILES level 2 representation are listed in Table

4.6.

Table 4.6: eSFILES level 2 representation input and output

Level 2

Input flowsheet hypergraph equipment parameters for simple models chemical identities

Task perform mass balance calculations with simple models; fix Temperatures and Pressures;
compute energy demand or release through simple models

Output annotated flowsheet hypergraph

Input The input required for generating eSFILES level 2 representation is the information

from eSFILES level 1 representation, raw input stream compositions, conversion factors for

all reactors, stoichiometric coefficient for all reactions, split fraction for all separators, divider

fraction for all divider, and finally, the temperature/pressure of streams entering or leaving

processes.

Output The output of eSFILES level 2 representation is a hypergraph containing data

for the operations (process-bonds) so that a quick mass and energy balance can be per-

formed, without requiring detailed design of the process-bonds. The data generated with the

additional information at this level is used for the design of the operations in the process

flowsheet. It also serves as input for process simulators employing simple models and not

requiring rigorous model data.

eSFILES representation at Level 3

Level 3 of the eSFILES hierarchical framework involves the addition of necessary infor-

mation required to perform rigorous simulations with any process simulator, such as Pro II

and Aspen. The operational and design parameters associated with process-atom along with

107



identities of chemicals in each process-bond. The list of variables is taken from a combined

in-house table of variables related to operations corresponding to rigorous models found in

process simulators [91]. As described in Section 4.2.4, this information is stored for each

process-atom using an instantiated ontology where the appropriate classes are instantiated

with their values. The eSFILES level 3 representation for the HDA process is shown in

Figure 4.10 below.

Figure 4.10: eSFILES level 3 representation for the HDA process

While the process ontology and the instantiated values are shown with a reasonable

degree of detail, the ontology could be easily expanded to include additional details from

process simulator keyword input files, mapping of the process-atoms and associated variables

across various different simulators, or further categorization of the classes to capture detailed

information. Given the flexibility and modular nature of the ontology, new classes could

be easily added and linked to process-atoms in the hypergraph to depict any information

necessary for any given application of the chemical process flowsheet.

108



Also, note that the hypergraph does not explicitly show heat exchangers and pumps

explicitly since their location in the flowsheet could be inferred based on the simple energy

balance information from eSFILES level 2 in Figure 4.9. Since they do not affect material

balance calculations, if the energy parameters of a stream change, it automatically implies

the presence of a heat exchanger (if enthalpy changed) or a pump (if pressure changed).

The input and output associated with eSFILES level 3 representation are listed in Table

4.7.

Table 4.7: eSFILES level 3 representation input and output

Level 3

Input annotated
flowsheet hypergraph

design and operation
parameters process ontology

Task perform rigorous flowsheet simulations

Output annotated flowsheet hypergraph connected to process ontology

Input The input required for generating eSFILES level 3 are the information from eSFILES

level 2 combined with a process ontology providing skeleton knowledge organization, design,

and operational parameters for each process-atom, and the chemical identities indicating

chemicals underlying each stream.

Output The output of eSFILES level 3 includes data needed to perform rigorous process

simulation, perform rigorous process intensification, flowsheet ranking, flowsheet enumera-

tion, generation of alternative candidates, and many more using appropriate models of the

process. Such problems could be solved efficiently using a combination of process knowledge

and machine learning or AI-based numerical techniques.

4.4 Conclusions

To address the drawbacks of purely data-driven approaches for process flowsheet synthe-

sis and design, a novel hybrid AI framework called an extended, simplified, flowsheet-input
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line-entry scheme (eSFILES ) is proposed. This representation involves organizing flowsheet

information using a hierarchical framework consisting of four levels, with Level 0 represent-

ing the flowsheet as purely text-based strings. Level 1 represents flowsheet connectivity as

hypergraphs with process streams represented as nodes and unit operations represented as

hyperedges. Level 2 includes process parameters required for performing simple mass balance

calculations using node-edge annotations in the hypergraph. Finally, Level 3 uses a process

ontology to capture detailed design and operation parameters required for rigorous flowsheet

simulation using commercial software.

To facilitate the correct processing of text-based SFILES representation (i.e., Level 0

of the eSFILES representation), a flowsheet grammar is also developed for extracting rele-

vant process context and checking for syntax validity of the SFILES strings. The eSFILES

framework for flowsheet representation is also suitable for performing flowsheet synthesis and

design using hybrid AI methods by combining domain knowledge and machine learning. The

demonstrated case studies show the framework’s ability to efficiently capture process con-

text in the eSFILES representation, which is then used to generate flowsheets and perform

rigorous simulations using the multi-level eSFILES flowsheet generation framework.

The eSFILES framework for process synthesis and design incorporates a combination of

artificial intelligence-based methods and well-known chemical engineering knowledge incorpo-

rated through an intelligent system facilitating fast, correct, and consistent decision-making

related to process synthesis and design. It is envisioned that this representation would aid

in the wider adoption of hybrid AI-based models due to its efficient organization of rele-

vant process information, an underlying mathematical framework allowing easy integration

with existing methods, diverse flowsheet representation formats (text-based, graph-based,

ontology-based), and the ability to allow for process constraints. The eSFILES framework

enables the development of hybrid AI-based systems by combining the multi-level hyper-

graph representation with already known flowsheet synthesis, design and analysis methods

to enable reliable, consistent and efficient solution of various process engineering problems
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involving process simulation based synthesis, design and analysis along with other machine

learning based specific applications listed in Table 4.1.

In future, we plan to extend this approach to other applications such as generating process

alternatives, flowsheet property prediction, process intensification, process control specifica-

tions, process safety evaluation, and many more. Going forward, one of our goals is to extend

this framework to higher levels where level 4 would include the process control aspects and

level 5 would include process safety, sustainability, and environmental impact factors. A

chemical safety analysis tool (ChemSub) has been already developed for inclusion within

the framework at level 4 to provide the information on the hazardous effects of dangerous

chemicals.
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Chapter 5: Ontology-based Pharmaceutical Information Extraction

As the biomedical literature is growing by over a million publications each year [93], devel-

oping an efficient, automated information extraction framework is required. An automated

information extraction framework that uncovers rich information buried in thousands of un-

structured documents sitting idle in data repositories would accelerate the drug development

cycle. This would lead to quicker, efficient, and objective analysis of new drug applications,

better historical data search capabilities, efficient trend extraction from unstructured phar-

maceutical text, and easier regulatory monitoring by integrating compliance documents in

FDA’s risk-based selection model for prioritizing inspections [94]. Such a framework is inline

with the U.S. Food and Drug Administration’s (FDA) new pharmaceutical quality initiative,

knowledge-aided assessment and structured application (KASA) [95], based on formalizing

drug product knowledge-base and knowledge-assessment using a structured approach.

Information extraction primarily involves automatically identifying specific domain-

related information using the semantics and grammatical structure of text. This broadly

comprises of two steps – identifying entities signifying specific information of interest (known

as named entity recognition or NER), and inferring the relationships between identified en-

tities (known as relation extraction or RE). Approaches underlying these tasks utilize gram-

matical structures to extract semantic frames [96, 97], utilizing knowledge bases for relation

inference [98], syntactic dependency parsing-based information extraction [99], semantic role

labeling [100], coreference resolution [101], and so on. There have been prior attempts in

the pharmaceutical domain to use natural language-based methods for information extrac-

tion with various applications. Viswanath et al. [102] developed a data-driven tool called

IMDP for rapidly developing a new drug briefing document. The methods underlying their

approach are calibrated quantum mesh [103], image processing, and search capability com-
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bined together to address various needs required for efficient document creation. Kang et

al. [104] developed an open-source information extraction framework called ElilE for parsing

and formalizing free-text clinical research eligibility criteria. Yuan et a. [105] proposed an

information extraction pipeline to transform unstructured text-based eligibility criteria into

structured representation as shareable clinical data queries. Xu et al. [106] developed MedEx,

a system for medication information extraction from clinical notes and utilized NLP-tools

like semantic tagger and parser for generating structured information/data. Harmata et al.

[107] reported a semi-automatic approach for information extraction for legal and regulatory

applications. Gentile et al. [108] developed a knowledge graph-based pipeline for seman-

tic information extraction from medical package inserts. Such graph-based representations

capture semantic information and are ubiquitous for representing proteins [109], chemical

reactions [110, 90], process flowsheets [92, 84], and many more applications of graph-based

data mining as presented in [111]. Skeppstedt et al. [112] reported a conditional random

field to recognize clinical entities in health records. Moreover, given the challenges posed by

biomedical text containing chemical names, symbols, tables, equations, technical terms, and

so on, several adapted named entity recognition approaches have been reported for identify-

ing biomedical terms including proteins, genes, and disease names [113, 114, 115, 116, 117].

A detailed description of prior works across various applications are provided in the excellent

review by Bhatnagar et al. [118].

Despite previous works, the challenges in extracting end-to-end relevant important in-

formation from pharmaceutical documents still remain largely unaddressed. First, there is

a need to systematically define the important information from pharmaceutical documents

before building a system that recognizes and extracts it automatically. For instance, the

crucial information would not just be all the named entities (drugs, chemicals, etc.) but also

the necessary conditions, dosage, level of impurities, packaging type, risk factors involved,

manufacturing processes, additional contextual information, and so on. Moreover, this infor-

mation should be custom-defined by the user based on their downstream applications that
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might vary significantly at various stages of the drug development process. Due to this, the

standard annotated datasets with entities of a given type (disease names, chemicals, pheno-

types) and standard defined relations [119, 120, 121] could not be used for such generalized

information extractions. Second, as a results of these, general-purpose labeled datasets are

not available for a customized and flexible information extraction problem that could be

used for training ML-based classifiers for identifying important information and benchmark

their performance. Hence, an unsupervised learning framework is necessary to mitigate these

issues and extract the relevant information from pharmaceutical documents automatically in

a dataset-agnostic and domain-specific manner. Moreover, due to the lack of availability of

such labeled datasets and the need for a flexible, customizable information extraction frame-

work, large language models (LLMs) like GPT-3 [122] are not suitable for a domain-informed

pharmaceutical information extraction. LLMs are primarily trained on non-technical English

language text, are characterized by a lack of transparency, and are not flexible in capturing

domain knowledge. Further, the associated challenges with generative AI-based models such

as ‘hallucinations’ due to their auto-regressive nature along with other limitations highlighted

in [123] make them unsuitable for pharmaceutical information extraction.

Here, a Schema (i.e., ontology)-based Unsupervised Semantic Information Extraction (or

SUSIE) framework is proposed which is a custom pharmaceutical ontology-based weak super-

vision framework for generalized, end-to-end information extraction from unstructured phar-

maceutical documents. The underlying framework for SUSIE is based on (i) a custom-built

pharmaceutical drug development and manufacturing ontology that organizes information

underlying the drug development process; (ii) a weak supervision framework with labeling

functions and unified medical language system (UMLS) database [124] inspired by clinical en-

tity classification work of Fries et al. [125]; (iii) natural language dependency structure-based

contextual information extraction combined with custom rules for processing various data

formats; (iv) a fine-tuned BioBERT language model [126] trained on relevant pharmaceutical

documents; and (v) a relation extraction module based on linguistic structure [127] to extract
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semantic triples (subject, relation, object) from text. These triples are combined with ex-

tracted information to generate knowledge graphs representation of important information.

The developed framework could be used for performing automated relevant information ex-

traction from pharmaceutical documents in a domain-specific and context-aware manner and

is adaptable to other domains.

5.1 Problem statement and objectives

Given an unstructured text document which possibly contains information relevant for

drug discovery, development, and manufacturing at any stage – from research on drug

molecule to the final drug product packaging – the objective is to automatically identify

important information across the document, identify associated relationships between them,

and represent them in a structured manner as a knowledge graph. Thus, the input is a

document, 𝐷𝑖 containing a sequence of sentences, {𝑆 𝑗 } where each sentence is a sequence of

words, (𝑤 𝑗 ,𝑡), and the objective is to identify collection of information chunks relevant for

drug development from each sentence in the document, 𝜖 𝑗 , and their associated relations.

Formally, consider a document 𝐷𝑖 comprising 𝑛 sentences,

𝐷𝑖 = {𝑆 𝑗 }𝑛𝑗=1; 𝑆 𝑗 = (𝑤 𝑗 ,1, 𝑤 𝑗 ,2, . . . , 𝑤 𝑗 ,𝑡) (5.1)

where 𝑆 𝑗 is the 𝑗 𝑡ℎ sentence comprising a sequence of 𝑡 words. The relevant information

contained in the document Γ(𝐷𝑖) is given as,

Γ(𝐷𝑖) = {𝜖 𝑗 }𝑛𝑗=1 = {{𝛿 𝑗 ,𝑘 }𝑝𝑘=1}
𝑛
𝑗=1; 𝜖 𝑗 = {𝛿 𝑗 ,1, 𝛿 𝑗 ,2, . . . , 𝛿 𝑗 ,𝑝}; 𝛿 𝑗 ,𝑘 = (𝑤 𝑗 ,𝑚, 𝑤 𝑗 ,𝑚+1, . . . , 𝑤 𝑗 ,𝑛)

(5.2)

where 𝜖 𝑗 is the collection of 𝑝 information chunks in the 𝑗 𝑡ℎ sentence and 𝛿 𝑗 ,𝑘 is a contiguous

sequence of important words between 𝑚𝑡ℎ and 𝑛𝑡ℎ positions in the sentence. Therefore, each

sentence 𝑆 𝑗 is characterized by 𝜖 𝑗 , the ordered collection of sets of important words 𝛿 𝑗 ,𝑘 .
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Our objective is to identify such chunks of information from each document 𝐷𝑖 that contains

unlabeled sentences with no prior information on 𝛿 𝑗 ,𝑘 . This is equivalent to learning the

transformation function Γ(.) that operates on a document 𝐷𝑖 to give {𝜖 𝑗 }𝑛𝑗=1 as shown in

Equation 5.2.

For instance, consider the sentence,

‘The cell growth is assessed by a staining method using a tetrazolium salt which

is converted by cellular dehydrogenases to a colored formazan product’

The important information chunks (or groups of words) and relations in this sentence would

be,

𝛿1,1 = (𝑤1,2, 𝑤1,3) = ‘cell growth’ 𝛿1,2 = (𝑤1,8, 𝑤1,9) = ‘staining method’

𝛿1,3 = (𝑤1,12, 𝑤1,13) = ‘tetrazolium salt’ 𝛿1,4 = (𝑤1,18, 𝑤1,19) = ‘cellular dehydrogenases’

𝛿1,5 = (𝑤1,22, 𝑤1,23, 𝑤1,24) = ‘colored formazan product’

𝛿1,1
assessed by
−−−−−−−−−→ 𝛿1,2 𝛿1,2

using
−−−−→ 𝛿1,3 𝛿1,3

converted by
−−−−−−−−−−→ 𝛿1,4 𝛿1,3

converted to−−−−−−−−−−→ 𝛿1,5

Thus, the relevant information contained in the sentence 𝑆1 is given by 𝜖1 =

{𝛿1,1, 𝛿1,2, 𝛿1,3, 𝛿1,4, 𝛿1,5} and the associated relations shown as a knowledge graph in Fig-

ure 5.1.

𝛿1,1

𝛿1,2

𝛿1,3

𝛿1,4

𝛿1,5

assessed by

using

converted to

converted by

cell growth

staining method

tetrazolium salt

colored formazan product

cellular dehydrogenases

Figure 5.1: Important information representation as knowledge graph with words/phrases as
words and relations between them as directed edges.

The underlying methodology characterizing the various modules in SUSIE required to
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automatically generate such structured representations of important information from un-

structured text are described in detail in the next section.

5.2 Methodology

The transformation function Γ(.) in Equation 5.2 is characterized by a combination of

strategies that underlies our information extraction framework as shown in Figure 5.2.

Figure 5.2: An overview of the end-to-end information extraction framework based on weak
supervision, BioBERT model, contextualization, and relation extraction to generate knowl-
edge graphs. The BioBERT schematic is adapted from Lee et al. [126].

The developed framework underlying SUSIE consists of four major components –

• first, ontologies, structured data sources, and custom rules for weak supervision, an

approach in machine learning that sidesteps the requirement of having manually la-

beled datasets by using structured (but often noisier) data sources for assigning labels

to unlabeled datasets in an automated manner. This requires a custom-built drug

development ontology developed as part of our work.

• second, a BioBERT-based binary classifier that learns a functional mapping to iden-

tify important information from text and improves generalization of the approach by
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learning patterns characterizing important information during the training stage. This

model could then be used to identify all important words given an input text.

• third, post-processors that capture semantics and contextual information about the

identified entities by utilizing the grammatical structure of sentences. The contextual

information complements the important words identified in the previous step.

• and fourth, a linguistics-based relations extractor that extracts relationships between

identified entities as semantic triples which are then used to generate a knowledge graph

representing important information. The knowledge graph combines all important in-

formation along with relations extracted from unstructured text.

Further details on these sub-frameworks characterizing our approach are provided in the

subsequent sections.

5.2.1 Pharmaceutical CMC ontology development

The goal of pharmaceutical CMC (Chemistry Manufacturing and Control) development

is to design a drug product meeting patient needs and develop a safe, robust, environmentally

friendly drug substance and drug product manufacturing process that delivers the drug prod-

uct with desired quality attributes. CMC development involves a sequence of decisions on

selecting activities and their timing to manage and mitigate risk to meeting design require-

ments through the development cycle [128]. The activities that are selected to be performed

in turn generate information on materials, processes, and properties that reduce risks over

time. The high level interplay of decisions, activities, risks and their relation to information

generated has been discussed in detail in literature [128].

The CMC ontology that is the focus in this work is a more detailed version of middle level

ontology [128] that seeks to capture the key information generated during development. The

information is organized hierarchically in this ontology using class-subclass relationships com-

bined with object and data properties [129, 130, 131]. The ontology was developed through
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various discussions with experts in the pharmaceutical industry across various functions. A

snapshot of the developed ontology is shown in Figure 5.3 below.

Figure 5.3: A representative snapshot of the custom-built drug development ontology

The final ontology comprised 1277 classes, 3268 axioms, 34 object properties, and 113

data properties and was developed using the Protége software [132] in .owl format, a standard

ontology development and sharing format. The central class in the ontology is named Drug

Manufacturing which represents information of various types and at different stages associ-

ated with drug manufacturing and development. The other classes corresponding to each

information type is associated with the central class through relations (or properties). While

there are several different classes in the ontology, details on the major classes are provided

below.
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Design specifications and risk grids There are separate risk grids for different compo-

nents of manufacturing process and drug product. Figure 5.4 shows risk grid for API synthesis

route, API crystallization, Drug Product, API solid state as sub-classes of the risk grid class.

The risk grids capture risks associated with various stages and conditions of the drug devel-

opment process including risk associated with API route, crystallization, solid state, or drug

product. The level of risk (low, medium, high) is defined based on several categorical and

numerical factors defined in the design specifications and design requirements. To capture

additional factors contributing to drug development risk, the ontology could be expanded by

creating further subclasses that capture the relevant risk factors.

Figure 5.4: Risk grid class and its subclasses

The individual risk grids have a list of design requirements with each design requirement

having a set of design attributes whose levels determine the level of risk. For example, for

API solid state, a design requirement is to have desirable API properties. A few examples

of design attributes that determine desirable API properties are – crystallinity, moisture

sensitivity, and stability under different conditions. In the ontology, the design requirement

and design attribute are captured as separate sub-classes of the class design specification as

this makes it more amenable to instantiation.
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Figure 5.5: Design specifications class and its subclasses

Materials There are different types of material that make up the final packaged drug. A

drug that a patient takes is referred to as drug product. The drug product comprises the

main active ingredient (referred to as API or Active Pharmaceutical Ingredient) along with

excipients. While API is made with desired quality, there are always low levels of impurities

(well below acceptable limits for patient consumption) present in the API. The manufacturing

process of API involves multiple synthesis steps each of which employ different reagents and

solvents in the manufacture. These different material types are captured as sub-classes of

the material class as shown in Figure 5.6.

Figure 5.6: Materials class and its subclasses

The ontology also lists the solvents and reagents that are commonly used in most small

molecule synthesis. The specific solvents and specific reagents are sub-classes of the class

solvents and reagents, respectively.

Material properties Each material that is made through the synthesis whether it is an

intermediate or is part of the final drug product has material properties associated with
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it that determine its quality and suitability for use. The properties are either physical or

chemical properties which are sub-classes of the material properties class. Figure5.7 shows a

schematic with a few illustrative material properties.

Figure 5.7: Material properties class and its subclasses

5.2.2 Standard ontologies and additional terms

To improve the coverage of the weak supervision task, the developed pharmaceutical drug

development ontology (Section 5.2.1) is augmented with other sources. These include, namely

– unified medical language system (or UMLS), standard ontologies that are not included in

UMLS but are relevant for drug manufacturing, and custom functions based on regular

expressions-based patterns to capture information not contained in either of the former two.

Unified medical language system The unified medical language system (or UMLS) is

a repository of biomedical vocabularies and integrates millions of names, relations, and con-

cepts from several different sources [124]. The three main components comprising the UMLS

are – a metathesaurus containing a repository of interrelated biomedical concepts, Semantic

Network mapping metathesaurus concepts to various high level categories, and lexical re-

sources for generating lexical variants of biomedical terms. Though the UMLS ecosystem is

vast, the metathesaurus is used extensively and utilize the ontologies that are relevant for our

purpose. Therefore, the following subdomains from UMLS were included in our framework

– UMLS MeSH ontology containing medical subject headings for documents on biomedical

and health related documents; comparative toxicogenomics database (or CTD) chemical on-
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tology containing information on environmental chemicals affecting human health and CTD

disease ontology with corresponding information on diseases; National Cancer Institute (NCI)

terminologies; and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT)

providing the core general terminology for the electronic health record (EHR). The 2021AB

version of the UMLS metathesaurus was used in this work.

Chemical names and reaction ontologies The other standard ontologies that are rel-

evant for our purpose include CHEBI (chemical entities of biological interest) [133], RXNO

(reaction ontology), and MOP (molecular processes). These ontologies capture various im-

portant modules relevant for our work – CHEBI contains information on chemical entities

that are of biological interest and thus have high drug-likeness, RXNO contains list of named

chemical reactions that often appear in text containing reaction mechanisms, and MOP con-

tains molecular processes that underlie named reactions and are thus a more formal way of

referring to steps in chemical reactions.

Additional custom terms In addition, there are certain patterns and nomenclature that

are not captured by the various ontologies or knowledge bases given the peculiar nature

of their nomenclature. For instance, various pharmaceutical companies (or organizations)

would have an internally different way of referencing chemicals based on a unique key or an

internally understood nomenclature. To handle such cases, regular expressions that capture

a certain pattern in textual data based on a set of predefined rules were used. For appropriate

abbreviation detection, which again could be missing from the above discussed structured

information sources, the Schwartz Hearst algorithm, a popular algorithm for identifying ab-

breviations in biomedical text [134], was used.

These sources of structured information in the form of UMLS, standard ontologies, and

regular expressions combined with our pharmaceutical drug development and manufacturing

ontology provide a rich source of structured information that could be used to perform weak

supervision and assign labels to unlabeled dataset.
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5.2.3 Text processing

Before performing information extraction, a given unstructured text has to be prepro-

cessed. Such preprocessing usually involves several steps aimed at both text processing as

well extraction of additional meta information that could be useful for fine-tuning the NER

task later. The following sections provide details on these steps.

Document cleaning Pharmaceutical documents often contain not just text but other

types of content such as tables, figures, references, footnotes, page numbers, and reaction

mechanisms as equations. Several NLP techniques, both custom built as well as those of-

fered by standard NLP processing Python libraries such as SpaCy [135] and NLTK [136],

were used to perform document preprocessing. The standard document cleaning tasks in-

volve – extracting only the document body text and section/subsection headings based on

XML map and associated meta-information from the document; identifying section head-

ings/subheadings based on regular expressions-based pattern identification on text meta-

information; and identifying table/figure captions using expressions-based pattern identifi-

cation. While the algorithms are developed assuming input documents as .docx files, they

apply to other document types such as PDF since they could easily be converted to .docx

format using off-the-shelf software, with the exception of PDFs that are scanned images of

text documents where optical character recognition (OCR) techniques might be required.

Natural language processing After standard text-based cleaning, the document is pro-

cessed using NLP-based approaches that includes, for each word in each sentence in the

document – identifying the position of the word in the sentence and stored as an integer

indicating the location of the start of the word; lemmatizing the word and stores the lemma

of a word, for instance, ‘mix’ is the lemma for ‘mixing’; assigning the part of speech (POS)

tag for the word, for instance verb, pronoun, symbol, etc.; and getting the dependency pars-

ing structure for words in a sentence, for instance, subject, modifier, etc. Such grammatical
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information is used later in the framework for fine-tuning the approach. More details on

these are provided in the later sections.

Document hierarchy and tables extraction In addition to the standard NLP-based

document preprocessing, several custom functions were developed. First, a custom function

including a document hierarchy extractor was developed that extracts the section and sub-

section headings by inferring the level of depth for each section heading and associate the

corresponding paragraph(s) text for each level. This document hierarchy is useful for pro-

cessing and analyzing the identified entities, if required, during the downstream tasks such

as ontology instantiation.

Second, all the tables from the document were extracted using document processors based

on the XML maps. Tables needed to be processed separately from the regular text process-

ing due to the inherent structure present in tables. Since tables are often rich sources of

information conveying some very specific information, they were processed separately during

the NER stage by treating the table column names as entities. This assumption of table

columns containing entities is based on the fact that pharmaceutical documents usually con-

tain information on drug concentration profiles, material composition information, impurity

information, and so on.

Chemical names tokenizer pharmaceutical documents containing information on drug

development and manufacturing often has drug names being referred to using many differ-

ent nomenclatures. The drugs and underlying chemicals or impurities are usually referred

to using their common names, IUPAC nomenclature, chemical formula, unique identifiers

corresponding to standard databases, or internal databases. These nomenclatures often are

inherently complex in that they are characterized by comma, hyphens, numbers, and spaces.

A standard, natural language-based text tokenizer would therefore make errors while tokeniz-

ing words containing such chemical names. Thus, a rules-based chemical names tokenizer,

ChemTok [137], was used to tokenize and identify chemical names in the text.
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5.2.4 Weak supervision

The hierarchical structure of an ontology could be used as a skeleton for assigning struc-

ture to unstructured text in a systematic manner. Ontologies, owing to their underlying

hierarchy offer an efficient use-case in weak supervision. Weak supervision is an approach

in machine learning that sidesteps the requirement of having manually labeled datasets by

using structured (but often noisier) data sources such as ontologies, knowledge-bases, and so

on for assigning labels to unlabeled datasets in an automated manner [138], and thus is useful

for labeling and generating (synthetic) datasets. Such synthetically labeled datasets could

then be used for training powerful ML models that are dependent on labeled datasets. The

custom-built ontology was combined with standard structured knowledge-bases and NLP

algorithms for providing structure to text in a context-aware manner. The following sec-

tions provide details on the various modules underlying our ontology-based weak supervision

approach.

In the first step, words were matched in each sentence to various terms in the structured

knowledge base comprising the UMLS knowledge base, ontologies, and custom functions. To

do this efficiently, Snorkel, a Python-based package for programmatically performing weak

supervision and assigning labels to data [139], was used. Performing weak supervision us-

ing Snorkel involves writing labeling functions that encode domain knowledge or supervision

sources to assign labels to data programmatically. The labeling functions (LFs) used in

[125] were adapted including – ontology-based LFs, dictionary-based LFs, task-specific LFs

containing regular expressions, and synset-based LFs. Ontology-based LFs include UMLS-

based ontologies such as MeSH, Schwartz Hearst for abbreviation detection; dictionary-based

LFs included separated LFs for CHEBI, CTD Chemical, CTD Disease, RXNO, MOP, and

the custom-built pharmaceutical drug development ontology; task-specific LFs include reg-

ular expressions to capture internally used chemicals nomenclature; synset LFs include sub-

ject predicate object relationships based on class-subclass relationships extracted from the

custom-built pharmaceutical drug development ontology. Each labeling function assigns a
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label 1 or 0 based on the defined rule within the labeling function based on term overlap

or text-based matching results. Thus, the input to a labeling function is a word and the

output would its assigned label of 0 or 1 depending on whether the input word matches the

patterns/database of symbols defined in the labeling function.

For instance, given a sentence ‘The cell growth is assessed by a staining method using a

tetrazolium salt which is converted by cellular dehydrogenases to a colored formazan product’,

each labeling function would assign a label to each word as shown in Table 5.1 with the various

labeling functions (listed across columns) and the corresponding labels for each word (listed

across rows). The labeling functions are – 𝐿𝐹𝑈𝑀𝐿𝑆-𝑀𝑆𝐻 (based on the MeSH ontology in

UMLS), 𝐿𝐹𝐶𝑀𝐶-𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦 (based on the custom-built CMC ontology), 𝐿𝐹𝐶𝐻𝐸𝐵𝐼 (based on the

CHEBI ontology), 𝐿𝐹𝐶𝑇𝐷-𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 (based on the CTD chemical names), and 𝐿𝐹𝑅𝑋𝑁𝑂 (based

on the RXNO ontology of named chemical reactions). The final label shown in column

‘assigned label’ is assigned as

𝑙𝑎𝑏𝑒𝑙 = 𝑚𝑎𝑥(𝐿𝐹𝑈𝑀𝐿𝑆-𝑀𝑆𝐻 , 𝐿𝐹𝐶𝑀𝐶-𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦, 𝐿𝐹𝐶𝐻𝐸𝐵𝐼 , 𝐿𝐹𝐶𝑇𝐷-𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 , 𝐿𝐹𝑅𝑋𝑁𝑂)

implying that a word is assigned a label of ‘1’ if any of the labeling functions assigns it

a label ‘1’. The labels in the ’assigned label’ column are used for training the BioBERT

model-based classifier to learn generalized patterns for identifying words. The last column

‘after contextualization’ indicates word labels assigned after performing contextualization by

identifying noun phrases (after identifying labels using BioBERT model on test documents)

as described in the next section. The reader is referred to [139, 125] for further details on

various types and functional details on labeling functions.
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Table 5.1: Example word labeling with various labeling functions. The underlined labels in
the last column indicate additional words labeled as important at the contextualization step.

words 𝐿𝐹𝑈𝑀𝐿𝑆-𝑀𝑆𝐻 𝐿𝐹𝐶𝑀𝐶-𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦 𝐿𝐹𝐶𝐻𝐸𝐵𝐼 𝐿𝐹𝐶𝑇𝐷-𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝐿𝐹𝑅𝑋𝑁𝑂 assigned label after contextualization

The1
cell2 1 1 1

growth3 1 1 1
is4

assessed5
by6
a7

staining8 1 1 1
method9 1 1 1 1 1
using10

a11
tetrazolium12 1 1 1 1

salt13 1 1 1 1 1 1
which14

is15
converted16

by17
cellular18 1

dehydrogenases19 1 1 1
to20
a21

colored22 1
formazan23 1 1 1 1
product24 1 1 1 1

5.2.5 Learning generalized patterns using fine-tuned BioBERT

Using the weak supervision-based information extraction, a labeled dataset was generated

with terms that are of interest (or are important) labeled as 1 and the rest labeled as 0.

Since these labels are based on a weak supervision strategy, they are inherently noisy and

the labeling strategy not completely generalizable. Thus, to improve the generalization of the

transformation function Γ(.), label words based on their context in a sentence and not just in

isolation, and improve the framework’s ability to handle and classify words unseen during the

training stage, a pre-trained BioBERT model was used for fine-tuning on our dataset for the

classification task. Fine-tuning involves further training a pre-trained model on customized

and often much smaller datasets to achieve optimal performance. The dataset used for such

fine-tuning and further details on the fine-tuning strategy are presented in detail in Section

5.3.
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5.2.6 Contextualization

It is often necessary to capture the neighboring information around entities since they

convey important contextual information. However, the ontology-based weak supervision

labeling approach only identifies individual entities but not the neighboring contextual in-

formation. To this end, noun phrases in documents were used to capture such information.

Noun phrases are words or group words that function like nouns and contains a noun accom-

panied by modifiers. To identify noun phrases, the dependency structure of a sentence is first

identified based on the grammatical structure of the sentence and modifiers associated with

nouns. Spacy’s pre-trained language model, ‘en_core_web_sm’ [135], was used to perform

dependency parsing and identify the noun phrases. For instance, for the example sentence

shown in Table 5.1, a partial dependency parsing diagram between the words is shown in

Figure 5.8. Here, the identified entities ‘formazan’ and ‘product’ are both part of a noun

phrase – ‘colored formazan product’. Hence, even though the word ‘colored’ was not identi-

fied as an entity, all words in the phrase ‘colored formazan product’ are tagged as important

information and assigned a label of 1. Thus, the entities are contextualized using such noun

phrases-based matching, and the labels are updated to reflect the contextual information as

shown in the ‘after contextualization’ column in Table 5.1.
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Figure 5.8: A partial dependency parsing diagram for the example sentence in Table 5.1
along with identified noun phrases highlighted in blue. The contextual information captured
in each noun phrase is also highlighted.

5.2.7 Relation extraction and auto-generating knowledge graphs

After the important words and their associated context have been identified, an important

next step for information extraction is identifying relations between the words. This would

allow for better capturing of the meaning of the text as a knowledge graph where the entities

(or important words) are represented as nodes in the knowledge graph, and relations between

them are represented as directed edges between them. To extract such relations, a linguistic

structure-based approach was utilized for extracting relations as semantic triples (subject,

predicate, object) where the predicate is the relation of interest connecting the subject and

the object. For instance, in the sentence,

‘Tetrazolium salt is converted by cellular dehydrogeneases’

the extracted semantic triple would be

subject: Tetrazolium salt

predicate: is converted by

object: dehydrogenases, cellular dehydrogenases
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Though the idea is straightforward, extracting such triples is a challenging task that involves

handling sentences with complex grammatical structures, multiple clauses that need to be

split into simpler ones, and performing coreference resolution that involves finding all men-

tions in text referring to the same entity. A framework that mitigates these challenges was

proposed in [127] and is now part of the Stanford OpenIE framework. This framework was

used to extract relations from text as semantic triples. The important words identified were

mapped to their relations based on the extracted relations to auto-generate knowledge graphs

like the one shown in Figure 5.1.

5.3 Dataset and model training

5.3.1 Dataset

Since our framework does not rely on labeled datasets for model training (due to the

presence of weak supervision stage), any data source that contains concepts relevant for drug

discovery and development could be used. Thus, the publicly available [140] international

conference on harmonization (ICH) guideline documents on quality, safety, and efficacy con-

taining a wide spectrum of relevant concepts, were primarily worked with. In total, the

dataset comprised 64 documents and a random 80-10-10 train-valid-test split was performed

that resulted in 51 documents in the training set, 6 documents in validation set, and 7 doc-

uments in the test set. In addition, an internal technical report obtained from Eli Lilly was

used as an additional test document for evaluating model performance. The list of documents

used for training, validation, and testing are listed in Table 5.2. In total, there were 21571

examples (sentences) in the training set, 2338 in the validation set, and 2392 in the test set.

The training and validation datasets were first processed using the weak supervision

framework to assign labels (0 or 1, depending on whether the word was identified as important

or not) to each word in the sentence, thus transforming the unlabeled ICH documents to a

labeled training dataset. This labeled dataset was then passed on to the supervised learning

stage involving the BioBERT fine-tuning. The BioBERT model input during the training
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stage would be sentences with tokenized words along with their target labels (0 or 1). For

tokenizing words, the WordPiece tokenizer [141] was used which splits a given word into

possibly multiple subwords (or pieces) based on their frequency of occurrence in the training

corpus and uses special token ‘##’ to indicate word pieces that are not the first part of a

given word. For instance, consider the same sentence in Table 5.1. At the training stage, the

input to the model would be:

( [𝐶𝐿𝑆], 0), (𝑡ℎ𝑒, 0), (𝑐𝑒𝑙𝑙, 1), (𝑔𝑟𝑜𝑤𝑡ℎ, 1), (𝑖𝑠, 0), (𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑, 0), (𝑏𝑦, 0), (𝑎, 0), (𝑠𝑡𝑎𝑖𝑛, 1), (##𝑖𝑛𝑔, 1),

(𝑚𝑒𝑡ℎ𝑜𝑑, 1), (𝑢𝑠𝑖𝑛𝑔, 0), (𝑎, 0), (𝑡𝑒, 1), (##𝑡𝑟𝑎, 1), (##𝑧𝑜, 1), (##𝑙𝑖𝑢𝑚, 1), (𝑠𝑎𝑙𝑡, 1), (𝑤ℎ𝑖𝑐ℎ, 0), (𝑖𝑠, 0),

(𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑, 0), (𝑏𝑦, 0), (𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟, 0), (𝑑𝑒, 1), (##ℎ𝑦, 1), (##𝑑𝑟, 1), (##𝑜𝑔𝑒𝑛, 1), (##𝑎𝑠𝑒𝑠, 1), (𝑡𝑜, 0),

(𝑎, 0), (𝑐𝑜𝑙𝑜𝑟𝑒𝑑, 0), ( 𝑓 𝑜𝑟𝑚, 1), (##𝑎𝑧, 1), (##𝑎𝑛, 1), (𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 1), ( [𝑆𝐸𝑃], 0)

where, ‘[CLS]’ and ‘[SEP]’ are special tokens that indicate the start and end of sentences,

respectively. During the model evaluation or test stage, the input to the model are similar to

those in the training stage with words in the sentence tokenized using WordPiece tokenizer,

but without their target labels. The target labels are predicted using the trained or fine-

tuned BioBERT model, classifying each word as not important (label 0) or important (label

1).

Table 5.2: List of documents used for training, validation, and evaluation of the model. All
data (except the technical report from Eli Lilly) is publicly available at [140]

S.No Document Description/Title Type

1 E2A guideline Clinical safety data management: definitions and standards for expedited reporting E2A train

2 E2D guideline Post-approval safety data management: definitions and standards for expedited reporting

E2D

train

3 E2E guideline Pharmacovigilance planning E2E train

4 E2F guideline Development safety update report E2F train

5 E3 guideline Structure and content of clinical study reports E3 train

6 E4 guideline Dose-response information to support drug registration E4 train

7 E5 R1 guideline Ethnic factors in the acceptability of foreign clinical data E5(R1) train

8 E7 guideline Studies in support of special populations: geriatrics E7 train
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Table 5.2: List of documents used for training, validation, and evaluation of the model. All
data (except the technical report from Eli Lilly) is publicly available at [140]

S.No Document Description/Title Type

9 E8-R1 guideline step 4 General considerations for clinical studies E8(R1) train

10 E9 guideline Statistical principles for clinical trials E9 train

11 E10 guideline Choice of control group and related issues in clinical trials E10 train

12 E11 R1 guideline Addendum to ICH E11: clinical investigation of medicinal products in the pediatric pop-

ulation E11 (R1)

train

13 E14 guideline The clinical evaluation of qt/qtc interval prolongation and proarrhythmic potential for

non- antiarrhythmic drugs E14

train

14 E15 guideline Definitions for genomic biomarkers, pharmacogenomics, pharmacogenetics, genomic data

and sample coding categories E15

train

15 E16 guideline Biomarkers related to drug or biotechnology product development: context, structure and

format of qualification submissions E16

train

16 E17 EWG step 4 General principles for planning and design of multi-regional clinical trials E17 train

17 E18 guideline Guideline on genomic sampling and management of genomic data E18 train

18 E19 EWG guideline Optimisation of safety data collection E19 train

19 E11A step 2 guideline Pediatric extrapolation E11A train

20 Q3C-R8 step 4 guideline Impurities: guideline for residual solvents Q3C(R8) train

21 Q14 step 2 guideline Analytical procedure development Q14 train

22 Q1B guideline Stability testing: photostability testing of new drug substances and products Q1B train

23 Q1C guideline Stability testing for new dosage forms Q1C train

24 Q1D guideline Bracketing and matrixing designs for stability testing of new drug substances and products

Q1D

train

25 Q1E guideline Evaluation for stability data Q1E train

26 Q1F stability guideline Stability testing of active pharmaceutical ingredients and finished pharmaceutical prod-

ucts

train

27 Q3A(R2) guideline Impurities in new drug substances Q3A(R2) train

28 Q3B(R2) guideline Impurities in new drug substances Q3B(R2) train

29 Q3D(R2) step 4 guideline Guideline for elemental impurities Q3D(R2) train

30 Q4B guideline Evaluation and recommendation of pharmacopoeial texts for use in the ICH regions Q4B train

31 Q5B guideline Quality of biotechnological products: Analysis of the expression construct in cells used

for production of r-dna derived protein products Q5B

train

32 Q5C guideline Quality of biotechnological products: Stability testing of biotechnological/biological prod-

ucts Q5C

train

33 Q5E guideline Comparability of biotechnological/biological products subject to changes in their manu-

facturing process Q5E

train

34 Q6B guideline Specifications: test procedures and acceptance criteria for biotechnological/biological

products Q6B

train

35 Q7 guideline Good manufacturing practice guide for active pharmaceutical ingredients Q7 train
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Table 5.2: List of documents used for training, validation, and evaluation of the model. All
data (except the technical report from Eli Lilly) is publicly available at [140]

S.No Document Description/Title Type

36 Q8(R2) guideline Pharmaceutical development Q8(R2) train

37 Q9 guideline Quality risk management Q9 train

38 Q10 guideline Pharmaceutical quality system Q10 train

39 Q11 guideline Development and manufacture of drug substances (chemical entities and biotechnologi-

cal/biological entities) Q11

train

40 Q12 guideline step 4 Technical and regulatory considerations for pharmaceutical product lifecycle management

Q12

train

41 S1A guideline Guideline on the need for carcinogenicity studies of pharmaceuticals S1A train

42 S1B-R1 guideline Testing for carcinogenicity of pharmaceuticals S1B(R1) train

43 S2(R1) guideline Guidance on genotoxicity testing and data interpretation for pharmaceuticals intended for

human use S2(R1)

train

44 S3A guidelne Note for guidance on toxicokinetics: the assessment of systemic exposure in toxicity studies

S3A

train

45 S3B guideline Pharmacokinetics: guidance for repeated dose tissue distribution studies S3B train

46 S4 guideline Duration of chronic toxicity testing in animals (rodent and non rodent toxicity testing)

S4

train

47 S5-R3 step 4 guideline Detection of reproductive and developmental toxicity for human pharmaceuticals S5(R3) train

48 S6 R1 guideline Preclinical safety evaluation of biotechnology-derived pharmaceuticals S6(R1) train

49 S7B guideline The non-clinical evaluation of the potential for delayed ventricular repolarization (qt in-

terval prolongation) by human pharmaceuticals S7B

train

50 S10 guideline Photosafety evaluation of pharmaceuticals S10 train

51 S11 step 4 guideline Nonclinical safety testing in support of development of paediatric pharmaceuticals S11 train

52 E2C R2 guideline Periodic benefit-risk evaluation report (PBRER) E2C(R2) valid

53 Q2-R2 step 2 guideline Validation of analytical procedures Q2(R2) valid

54 S12 step 2 guideline Nonclinical biodistribution considerations for gene therapy products S12 valid

55 Q6A guideline Specifications: test procedures and acceptance criteria for new drug substances and new

drug products: chemical substances Q6A

valid

56 S7A guideline Safety pharmacology studies for human pharmaceuticals S7A valid

57 S9 guideline Nonclinical evaluation for anticancer pharmaceuticals S9 valid

58 E1 guideline The extent of population exposure to assess clinical safety for drugs intended for long-term

treatment of non-life-threatening conditions E1

test

59 Q1A(R2) guideline Stability testing of new drug substances and products Q1A(R2) test

60 Q2(R1) guideline Validation of analytical procedures: text and methodology Q2(R1) test

61 Q5A (R1) guideline Viral safety evaluation of biotechnology products derived from cell lines of human or

animal origin Q5A(R1)

test
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Table 5.2: List of documents used for training, validation, and evaluation of the model. All
data (except the technical report from Eli Lilly) is publicly available at [140]

S.No Document Description/Title Type

62 Q5D guideline Derivation and characterisation of cell substrates used for production of biotechnologi-

cal/biological products Q5D

test

63 S1C(R2) guideline Dose selection for carcinogenicity studies of pharmaceuticals S1C(R2) test

64 S8 guideline Immunotoxicity studies for human pharmaceuticals S8 test

65 Eli Lilly document Eli Lilly internal technical report test

5.3.2 BioBERT model architecture and training

The BioBERT model is a pre-trained language representation model trained on biomed-

ical corpora, containing PubMed abstracts (4.5B words), PubMed Central full-text articles

(13.5B words), and standard English language corpus (3B words) [126]. BioBERT is based

on the BERT model [142], a state-of-the art sequence model used for learning word rep-

resentations for English language and is trained on general domain texts. A transformer

model [vaswani2017attention] underlies the BERT architecture, which has been shown

to be successful in various engineering applications including reaction prediction [28, 47],

retrosynthesis [52, 29, 5], electrocatalyst discovery [143], property prediction [88], chemical

product design [40, 144], and so on. BioBERT overcomes the limitations of using BERT on

BioMedical text by using a domain-focused training set and learning efficient word distri-

butions more focused on the BioMedical domain. Hence, BioBERT is based on the BERT

model architecture and is fine-tuned on a large corpus of BioMedical datasets. A schematic

of the BioBERT model architecture is shown in Figure 5.9.

Large models such as BioBERT could also be fine-tuned on a downstream task without

retraining the entire model. This involves initializing the BioBERT model architecture using

the pre-trained model weights, and then training the model from this stage on a custom

dataset or task for few epochs. In our case, the custom dataset is the set of ICH documents

in the training set and the task is to use the labeled dataset after weak supervision stage to

train a BioBERT-based classifier. Since this is a binary classification task with two labels, a
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Figure 5.9: A schematic of the BioBERT architecture and pre-training strategy based on
BERT. Schematic adapted from [126].

cross-entropy loss function defined by

𝐿 = − 1

𝑁

𝑁∑︁
𝑖=1

𝑦𝑖 .𝑙𝑜𝑔(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖).𝑙𝑜𝑔(1 − 𝑝(𝑦𝑖)) (5.3)

was minimized, where 𝑝(𝑦𝑖) is the predicted probability of 𝑖 being in class 1, (and hence, a

probability 1− 𝑝(𝑦𝑖) of it being in class 0), 𝑦𝑖 is the true class label, and 𝑁 is the total number

of data points. The BioBERT model was fine-tuned on this task for 3 epochs since – first,

fine-tuning for just a few epochs is usually sufficient to achieve optimal performance, and

second, to avoid overfitting on the small custom training dataset with noisy labels from weak

supervision. Moreover, as seen from the validation loss in Figure 5.10, the validation loss

plateaus around 3 epochs. Since the model is being fine-tuned on a smaller dataset, extensive

hyperparameter optimization was not performed except for the learning rate, weight decay,

and the number of epochs using the validation set. The model is characterized by 107M total

training parameters. Note that since the model is only being fine-tuned for a few epochs, the

computational cost associated with the model is much smaller.

Remark 1: Note that the model considers the sequential position of the words in a sentence

due to its autoregressive nature. Thus, the contextual information about the words are used
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inherently while predicting the target labels.

5.4 Results

5.4.1 Model performance evaluation and statistics

The model training results showing the training loss and validation loss with training

steps during the model fine-tuning stage are presented. The training and validation loss

as the training progresses is shown in Figure 5.10 and it is observed that the validation loss

plateaus around 1750 training steps which corresponds to 3 epochs. The predictions from the

model are in the form of logits or raw probability scores which are mapped to their respec-

tive class predictions based on higher logit values. To further understand the performance

of the model, the standard metrics computed for classifiers such as – precision, recall, F1

score, and accuracy are computed. Precision indicates the fraction of true positives across

all the positive class predictions made by the classifier (TP/(TP+FP)); recall indicates the

fraction of true positives across all the true positives in the dataset (TP/(TP+FN); F1-

score is a harmonic mean of precision and recall and shows the trade-off between them as

a single measure; and accuracy is the fraction of correct predictions across all the predic-

tions ((TP+TN)/(TP+TN+FP+FN)). The precision, recall, F1-score, and accuracy on the

training, evaluation, and test dataset are shown in Table 5.3.

Figure 5.10: Training and evaluation loss with
training steps

Table 5.3: Evaluation metrics on the
train, validation, and test set. For
the test set, numbers in parentheses
indicate performance metrics on the
ICH test set documents (i.e. exclud-
ing the Eli Lilly internal technical re-
port)

Metric train validation test

Precision 0.989 0.954 0.943 (0.955)
Recall 0.991 0.973 0.824 (0.975)
F1-score 0.990 0.964 0.879 (0.965)
Accuracy 0.996 0.988 0.954 (0.987)
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It should be noted that the ground truth labels are auto-generated based on the weak

supervision strategy which are inherently noisy and thus the labels may not be completely

accurate. Although these metrics give a good indication of the model’s abilities, they may

not be completely representative of the true model performance given the noisy nature of

assigned labels. Some of the metrics for evaluating NER performance and created other

custom metrics are therefore adapted to provide further insights into the performance of our

approach. First, entity detection rate indicating the fraction of words labeled as entities by

our framework is defined as,

detection rate =
# of unique tagged words

# of unique words in the entire document
(5.4)

Second, to assess the accuracy of these labels, an indirect route using tf-idf (term frequency-

inverse document frequency)-based word importance scores [145] to identify the most impor-

tant words across documents is defined as,

tf(t,d) = 𝑓𝑡,𝑑 idf(t,D) = log
𝑁

| {𝑑 ∈ 𝐷 : 𝑡 ∈ 𝐷} |

tf-idf(t,d,D) = tf(t,d) × idf(t,D) (5.5)

where 𝑓𝑡,𝑑 is the raw term frequency of term 𝑡 in document 𝑑, 𝑖𝑑𝑓 (𝑡, 𝐷) is the inverse document

frequency of term 𝑡 across a corpus of documents 𝐷, and | {𝑑 ∈ 𝐷 : 𝑡 ∈ 𝐷} | is the number of

documents across 𝑁 =| 𝐷 | total documents where the term 𝑡 appears. For each document,

500 words with the highest tf-idf scores are identified to get a list of important words that need

to be captured. The fraction of these 500 words identified by the NER model as important

is then computed to indirectly assess the accuracy of the model by estimating its ability to

capture these important words. Hence, the actual performance of the model is possibly better

than these scores, however, they could be treated as a lower bound on the model performance.

The assumption here is that words with high tf-idf scores are likely to be important and hence

should be captured but there is no differentiation between general words and drug discovery
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and development related words. The entity detection rate and tf-idf scores-based coverage

fraction of the framework estimated using the test set are presented in Table 5.4.

Table 5.4: Test set statistics of the NER approach using SUSIE

Document detection rate (%) tf-idf coverage (%)

E1 guideline 34.5 26.4
Q1A(R2) guideline 39.6 71.2
Q2(R1) guideline 38.2 59.4
Q5D guideline 48.4 89.6
S1C(R2) guideline 40.0 63.4
Q5A(R1) guideline 42.7 84.8
S8 guideline 48.9 85.2
Eli Lilly internal report 47.2 86.4

Average 42.4 70.8

5.4.2 Test set information chunks identified and auto-generated knowledge graphs

Recall that apart from the ICH documents, an internal Eli Lilly report was also a part

of the test set. This document possibly contained several new concepts and terms that were

likely not part of the ICH documents and hence, were not seen by the model during the

training stage. This document therefore serves as an ideal test bed to evaluate the model

performance on truly out-of-sample documents. Few examples of important information

chunks identified from the document using SUSIE are highlighted below.

Remark 2: Note that certain chemicals/drug names that are confidential in nature have

been masked-out using terms such as Compound_1/2/3, Chemical_1/2/3, IUPAC_1/2/3,

Drug_1/2/3, and so on.

Input 1: Compound_1 is not a bacterial mutagen in the Ames assay. The same

assessment criteria would be used to evaluate any future route modifications to

determine if additional controls for genotoxic species will be needed in proposed

starting material Compound_1.
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Input 2: Compound_1 is introduced in the first step of the proposed 3-step com-

mercial manufacturing process for Drug_1 and is incorporated into the drug sub-

stance as a significant structural fragment. It is a chemically-stable, highly-purified

crystalline material that has more desirable properties for a starting material than

compounds earlier in the synthetic route. Compound_1 can be readily characterized

by commonly known analytical techniques, which separate and quantify known im-

purities, as well as potential isomeric impurities and degradation products.

Input 3: The structures for both impurities listed in Table 3.2-2 are shown in Figure

3.2-1. The structure of Compound_2 has been confirmed by independent synthe-

sis of an authentic sample and characterization by sensitive spectroscopic methods.

Benzophenone (Compound_3) is a commercially available material. Both of these

impurities, and their downstream process derivatives, are either fully purged or are

present in the final drug substance at levels below the ICH reporting threshold

(0.05%). Structures of the downstream process derivatives are provided in Back-

ground Information.

Input 4: The fate of Compound_3 in Step 1 of the proposed commercial manu-

facturing process was determined by reacting Compound_2 with starting material

compound_1, as shown in Scheme 6.5.2.1-2. One main component was observed in

both Step 1a and Step 1b, which were determined to be Compound_4 and Com-

pound_5, respectively, by LC-MS characterization.

For evaluation of the fate and purge of Compound_2, Step 1 of the commercial man-

ufacturing process was performed with 1% of Compound_2 added to the proposed

starting material Compound_8. The isolated product Compound_6, contained

0.09% of Compound_5, with neither Compound_2 nor Compound_4 being ob-

served at a reporting threshold of 0.05%. Thus, a rejection efficiency of 91% was

demonstrated for Compound_2 in Step 1.
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Input 5: Drug_1 is being developed as 80 mg and 150 mg immediate release

tablets. The following discussion summarizes the development of the dissolution

conditions including justification of the testing conditions chosen; apparatus and

rotation speed, media conditions selected; and demonstration of the discriminating

capability of the conditions. The complete method and validation summary are

provided in Appendices 3.4.A1 and 3.4.A2, respectively, at the end of this section.

For inputs 2 and 3 above, the knowledge graph representing the extracted information

presented in a structured manner are shown in Figures 5.11 and 5.12. Additional knowledge

graphs for examples shown in Appendix E from the technical report.

Figure 5.11: Automatically generated knowledge graph for example Input 2 above

141



Figure 5.12: Auto-generated knowledge graph for example Input 4 above

Based on the above, it is observed that our framework (SUSIE) automatically generates

structured knowledge graphs from unstructured pharmaceutical text inputs. The knowledge

graphs capture the important information (from a drug development or CMC standpoint)

as defined by the custom built and standard ontologies used in our framework. SUSIE

also captures additional contextual information characterizing the information chunks. For

instance, in input 1, ‘Compound_1’ along with its associated information that it’s a ‘proposed

starting material’ has been captured. In input 2, drug names that were likely not present in

the training database but were automatically captured based on their neighboring context,

thus pointing towards the model’s ability to handle new and relevant concepts not seen during

the training stage. However, it is also observed that certain misses that are difficult for the

model to capture at this stage. For instance, consider input 5 where the model correctly

identified the 150mg dosage information for the drug tablets. However, the 80mg dosage

information that was also associated with the same drug was missed. However, a subject

matter expert (or SME) input is still needed to filter out the important relationships from
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generic ones. But the knowledge graph is still useful since it surfaces output in a way that

makes it easier for SME to spot the important relationships. Improving the capabilities

of the model to allow capturing such complex but relevant contextual information could be

addressed using relation extraction and is part of our future work on this framework. Further

examples from the report are provided in Appendix E.

5.5 Conclusions

An end-to-end pharmaceutical relevant information extraction framework called SUSIE

was developed by combining – domain ontologies for representing important concepts, a

weak supervision framework for transforming unlabeled datasets to labeled datsaets, a fine-

tuned BioBERT model that represents a generalized model able to handle new documents,

contextualization modules to capture relevant context associated with important entities,

and a relation extraction approach for auto-generating knowledge graphs. The framework

was trained on publicly available (unlabeled) ICH documents and achieves a test accuracy

and F1-score of 96% and 88%, respectively, on out-of-sample documents including an internal

technical report from Eli Lilly. A major contribution of this work is to develop a custom

pharmaceutical drug development ontology and build an information extraction framework

upon it that elimintates the need for manual data curation for model training. The underlying

framework characterizing SUSIE is generalizable and adaptable to other domains.
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Chapter 6: Hypergraph Network of Organic Chemistry

With the accelerated discovery of new reactions and complex molecules due to advances

in computational methods, chemistry literature has been growing rapidly. The major drivers

for this growth are the advances in molecule optimization, reaction engineering and opti-

mization resulting in the discovery of novel reactions that were either unknown earlier or

were infeasible, and high-throughput screening methods that have led to the re-engineering

(or re-wiring) of existing reactions to make them more cost-effective and sustainable from an

environmental standpoint.

To condense (and make sense of) the huge amount of chemistry literature that is available

to us mostly in an unstructured format, tools that could be used to represent this knowledge

in a structured format, compute coarse-grained statistics that summarize the information

effectively, identify general trends on the evolution and growth of the domain, and discover

new chemistry insights that were unknown earlier, are required. While a framework that ad-

dresses these requirements could be custom-developed, network theory naturally offers tools

and techniques such as – structural statistics [146, 147], centrality measures [148], clustering

[149], network embedding [150, 151], link prediction [152, 153] – that could be used to tackle

these requirements. There are several variations of graph-based representations for chemical

reactions, but the most common is a directed graph representation where nodes represent

molecules and directed edges from reactant nodes to product nodes represent reactions. Stud-

ies based on such dyadic representations have reported several interesting properties of the

reactions network such as their scale-free network structure similar to the World Wide Web

(WWW) [154], the existence of core (most useful) and peripheral molecules across organic

chemistry reactions [155], the small-world nature of reaction networks [156], which is shown

to make a network robust towards node/edge deletions [157]. [158, 110] demonstrated ap-
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plications of network theory-based studies in parallel synthesis, reactivity estimation, and

rewiring of synthetic pathways.

The traditional directed graph representation for chemical reactions has several limita-

tions. First, a directed graph representation does not capture the complete reaction context,

i.e. it introduces independent directed edges for multi-reactant (or multi-product) reactions

from each reactant to each product, thus losing contextual information on the presence of

other reactants (or products). As a result, several seemingly independent, directed edges

might correspond to the same reaction. Second, a dyadic graph representation does not al-

low for reaction (or edge)-specific molecular (or node) properties such as relative molecular

complexity, reactivity, stoichiometry, reaction kinetics, and other properties that might be

useful for making the graph representation more complete, rich, and chemistry-aware. Third,

due to the above limitations, the analyses generally could not be analyzed in a self-contained

manner to draw inferences and identify the trends in chemistry that are not an artifact of

the reaction representation, as observed for degree correlations in [156].

To address these limitations, an alternative hypergraph representation is proposed where

molecules are represented as vertices and an entire reaction is represented as a hyperedge.

Since hypergraphs allow for an edge (or hyperedge) to connect multiple vertices together

(and not just two), the entire reaction is represented using just a single, unique hyperedge.

To address the issue of incorporating reaction-specific node attributes, a recently proposed

annotated hypergraph framework [159] is used, which allows for each node to have hyperedge-

specific annotations and makes the representation flexible to allow for reaction-specific con-

textual information. Therefore, compared with directed graphs, annotated hypergraphs are

much more frugal in terms of the number of hyperedges, flexible in capturing reaction-level

context, and due to the one-to-one correspondence between hyperedges and reactions, the

statistics are self-contained, which correspond to underlying chemistry trends.

Here, the directed graph representation of chemical reactions and an annotated hyper-

graph representation is compared and contrasted using a standard organic chemistry reactions
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database containing nearly half a million reactions. This work is the first attempt to study

the network of organic chemistry using a hypergraph framework that is shown to be frugal,

rich, and chemistry-aware in nature, making them suitable for deriving chemistry inferences.

To allow for a one-to-one comparison between the dyadic representation and the hypergraph

representation, standard network properties for the directed graph representation and an

equivalent hypergraph representation are computed using the same reactions dataset. At the

same time, the time-evolution of these properties are also reported. It is also shown how a

hypergraph could be transformed into a weighted directed graph to allow for computation

of dyadic network properties that may be ill-defined or difficult to compute for hypergraphs

(at the moment). Finally, to demonstrate the use-case of such hypergraph representations

not just for understanding chemistry trends but also for reaction engineering, it is shown

how the hypergraph representation could be used in the reaction classification problem, i.e.,

predicting the reaction type given participating molecules, which has applications in reaction

mechanism generation, retrosynthetic planning, and feasibility analysis.

6.1 Properties of directed graphs and hypergraphs

In this section, directed graphs, annotated hypergraphs, and the various network statistics

that are used to characterize the hypergraph network of organic chemistry are formally

defined. The following sections could also be treated as a tutorial that motivates various

network properties using an example set of four simple reactions containing five different

molecules.

6.1.1 Mathematical representation

A directed graph is an ordered pair 𝐺 = (𝑉, 𝐸) of a set of vertices 𝑉 and a corresponding

set of edges 𝐸 . Each edge 𝑒𝑖 in 𝐸 connects a source node 𝑠𝑖 to a target node 𝑡𝑖, giving

directionality to the set of edges, thus resulting in a directed graph as opposed to an undirected

graph. Chemical reactions could also be represented using such directed graphs where the
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reactants and products are represented as vertices, and directed edges from reactants to

products representing reactions. For reactions with multiple reactants and products, the

directed graph is typically constructed using all-to-all wiring with all reactants of a given

reaction connecting individually to all products in the reaction through independent directed

edges. Figure 6.1(a) shows a directed graph representation for the set of four reactions

(𝑅1, 𝑅2, 𝑅3, 𝑅4) with 5 different molecules (𝐴, 𝐵, 𝐶, 𝐷, 𝐸) shown in Equation 6.1.

𝑅1 : 𝐴 −→ 𝐵

𝑅2 : 𝐵 + 𝐸 −→ 𝐶

𝑅3 : 𝐶 −→ 𝐸 + 𝐷

𝑅4 : 𝐷 + 𝐶 −→ 𝐴 + 𝐸
(6.1)

Figure 6.1: (a) Directed graph-based representation (b) Annotated hypergraph-based repre-
sentation where an entire reaction is represented using a single hyperedge and the annotations
indicate the vertex ‘roles’ as product (P) or reactant (R)

On the other hand, a hypergraph is a generalization of a graph where each edge is not

limited to connecting just two vertices but could connect any number of vertices via hyper-

edges. Mathematically, a hypergraph is a pair 𝐻 = (𝑉, 𝐸) where 𝑉 is a set of vertices and 𝐸

is the set of edges (or hyperedges) where each edge contains a non-empty subset of 𝑉 . Since

each chemical reaction has contextual information about molecules along with an inherent

directionality, annotated hypergraphs [159] with hyperedge-specific annotations (or roles) for

nodes in a hyperedge are used. An annotated hypergraph is defined as 𝐴 = (𝑉, 𝐸, 𝑋, 𝑙) where
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𝑉 is the set of nodes, 𝐸 is a labeled hyperedge set where each hyperedge is a subset of 𝑉 , 𝑋

is a finite label set containing the possible set of labels (or annotations/roles), and 𝑙 is a role

labeling function for assigning roles to each edge in the label. It should be noted that each

node 𝑣 would have a given role 𝑥 in given edge 𝑒, written as 𝑙 (𝑣, 𝑒) = 𝑥. Roles are contextual

and they are assigned to node-edge pairs, unlike node attributes that are defined a priori

for each node in dyadic graphs. For a set of chemical reactions, the set of vertices would be

nodes, reactions containing the set of vertices participating in the reaction are represented

as hyperedges, and the node-edge pair role could either be ‘product (P)’ or ‘reactant (R)’ for

nodes that play the role of reactants or products in a reaction, respectively. Figure 6.1(b)

shows the equivalent hypergraph representation for the set of four reactions in Equation 6.1.

Remark 1: Observe that the number of (hyper)edges in a hypergraph representation is

the same as the number of reactions, but this is not the case with edges in a directed graph

representation.

Remark 2: One of the primary benefits of using annotated hypergraphs is the incorpora-

tion of contextual information about reactions and molecules through hypergraph annotations

or roles.

6.1.2 Degree distributions

Degree distributions provide a general sense of the network structure and its connectivity

pattern. Generating a degree distribution involves computing the degree (or number of edges)

for each node and estimating the underlying probabilistic distribution that they follow. For

a directed graph, each node has two kinds of degrees – incoming degree (number of incoming

edges, 𝑑𝑖𝑛) and outgoing degree (number of outgoing edges, 𝑑𝑜𝑢𝑡). The sum of the incoming

and outgoing degrees, total degree (𝑑𝑖𝑛 + 𝑑𝑜𝑢𝑡 = 𝑑𝑡𝑜𝑡𝑎𝑙), is the same as the degree of an

equivalent undirected graph with directionality removed from directed edges.

For an annotated hypergraph, equivalent degree distributions could be defined. The in-

coming degree for a node in the annotated hypergraph would involve counting the number of
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hyperedges where the node participates with a role ‘product’ (𝑑𝑝𝑟𝑜𝑑𝑢𝑐𝑡 or 𝑑𝑖𝑛) since products

have incoming edges, and the outgoing degree would involve counting the number of hyper-

edges where the node participates with a role ‘reactant’ (𝑑𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 or 𝑑𝑜𝑢𝑡) since reactants have

outgoing edges. The sum of the incoming and outgoing degrees would be the total degree

(𝑑𝑝𝑟𝑜𝑑𝑢𝑐𝑡 + 𝑑𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 = 𝑑𝑡𝑜𝑡𝑎𝑙).

Table 6.1 shows the incoming and outgoing degrees for each node in the set of reactions

in Equation 6.1 for directed graph and hypergraph representations.

Table 6.1: Degree distributions for the example set of reactions in Equation 6.1

Node Directed graph Annotated hypergraph

in out in (P) out (R)

A 2 1 1 1
B 1 1 1 1
C 2 4 1 2
D 1 2 1 1
E 3 1 2 1

Figure 6.2: The hypergraph (H), dual hypergraph (𝐻∗), and their respective s-linegraphs for
the example set of four reactions in Equation 6.1
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(a) Hypergraph (H) (b) 1-linegraph (H) (c) 2-linegraph (H) (d) 3-linegraph (H)

(e) Dual hypergraph
(H∗)

(f) 1-linegraph (𝐻∗) (g) 2-linegraph (𝐻∗) (h) 3-linegraph (𝐻∗)

Figure 6.3: The hypergraph (H), dual hypergraph (𝐻∗), and their respective s-linegraphs for
the example set of four reactions in Equation 6.1

6.1.3 Average shortest path length

The average shortest path length of a network measures the separation between nodes

(on average) in term of the number of edges between nodes. Since this measure involves

computing the separation between all nodes, the network is required to be connected, i.e.,

there must exist a path from any node to any other node in the network. For a directed

graph, the average shortest path length is the number of directed edges between nodes with

the constraint that the distance should be measured along the direction of the edges. For

undirected graphs, this is simply the average number of edges between nodes, irrespective

of the directionality. This is often referred to as the all pairs shortest path (APSP), and is

defined as,

𝑙 =
∑︁
𝑠,𝑡𝜖𝑉

𝑑 (𝑠, 𝑡)
𝑛(𝑛 − 1) (6.2)

where 𝑑 (𝑠, 𝑡) is the distance between nodes 𝑠 and 𝑡, and 𝑛 is the total number of nodes in the

network.
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To define connectivity for hypergraphs, two new concepts are introduced – dual hyper-

graphs and linegraphs. First, the dual hypergraph 𝐻∗ of a hypergraph 𝐻 is a hypergraph

with nodes and edges interchanged. Therefore, in an 𝐻∗, the nodes represent reactions and

the hyperedges represent the set of molecules common between the nodes that it connects.

Second, a linegraph 𝐿 (𝐻) of a hypergraph 𝐻 is defined as a graph whose vertex set is the set

of vertices of 𝐻 with two vertices adjacent and connected in 𝐿 (𝐻) when their corresponding

hyperedges have a non-empty intersection, i.e. they have common hyperedges (or reactions

in our context). Therefore, a hypergraph 𝐻 is said to be connected if its linegraph 𝐿 (𝐻)

is connected. A generalization of linegraphs is the s-linegraph where s (an integer, ≥ 1)

indicates the minimum size of the intersection, thus giving rise to s-linegraphs. Because of

the duality property of hypergraphs, an equivalent linegraph 𝐿 (𝐻∗) could be created for the

dual hyeprgraph 𝐻∗ where the set of vertices represent hyperedges and adjacent vertices are

connected if they have non-empty intersections, i.e. common molecules in our context. The

s-linegraphs for the example set of reactions in Equation 6.1 for different values of 𝑠 is shown

in Figure 6.3 for 𝐻 and 𝐻∗.

Now, for hypergraphs, the average shortest path length could be defined in the same

manner as for dyadic graphs by computing the distance between nodes in an s-linegraph of H

(known as s-distance). For our purpose, the 1-linegraph is generated and the average shortest

1-distance between the nodes using Equation 6.2 is computed.

Since the computation of the average shortest path length requires the graph to be con-

nected, the largest connected subcomponent both for the directed graph and the hypergraph

are identified and their respective average shortest path lengths are reported. For the exam-

ple set of four reactions in Equation 6.1, since both the directed graph representation and the

hypergraphs’s 1-linegraph representations are connected, their largest connected subcompo-

nents are the same as their respective graphs (or hypergraphs). The average path lengths

computed for the regular (undirected) graph and the hypergraph is show in Table 6.2.

Remark 3: It is evident from the above table that in a hypergraph, the distances between
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Table 6.2: All pairs shortest distance for the example reactions

Node pairs Graph Hypergraph
in s=1

𝑑𝐴−𝐵 1 1
𝑑𝐴−𝐶 1 1
𝑑𝐴−𝐷 1 1
𝑑𝐴−𝐸 2 1
𝑑𝐵−𝐶 1 1
𝑑𝐵−𝐷 2 2
𝑑𝐵−𝐸 2 1
𝑑𝐶−𝐷 1 1
𝑑𝐶−𝐸 1 1
𝑑𝐷−𝐸 1 1

Average 1.3 1.1

nodes correspond exactly to the number of reactions that separate the nodes (or molecules),

whereas in the case of a directed graph representation, the distance between nodes corre-

sponds only to partial reactions separating the nodes and not the complete reactions.

6.1.4 Assortativity

Assortativity is a measure of the mixing patterns in networks that indicates the general

mixing behavior of nodes with other nodes in the network to give rise to a bigger network.

Assortativity is defined as the degree correlations between nodes, and therefore, the mixing

pattern could either be assortative (positive correlation) or diassortative (negative correla-

tion). The assortativity is often computed as the Pearson correlation coefficient between the

degrees of a pair of nodes and takes values between −1 and 1 – a network with an assorta-

tivity coefficient of −1 indicates a perfectly disassortative mixing, an assortativity coefficient

of 1 points towards a perfectly assortative mixing, and an assortativity coefficient of 0 indi-

cates a non assortative graph. Figure 6.4 shows an example of assortative and disassortative

networks.
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(a) Assortative (b) Disassortative

Figure 6.4: Different mixing patterns. Assortative networks have mixing patterns that arise
due to nodes with similar degree connecting to other nodes with similar degrees, whereas
disassortative networks are a result of mixing patterns where nodes with dissimilar degrees
connect to each other.

For a directed graph, the in-assortativity (𝑟𝑖𝑛,𝑖𝑛), out-assortativity (𝑟𝑜𝑢𝑡,𝑜𝑢𝑡), and in-out

assortativity (𝑟𝑜𝑢𝑡,𝑖𝑛) measures the tendencies of nodes to connect with other nodes that have

similar in-degrees, out-degrees, and out-in degrees, respectively. For 𝛼, 𝛽 ∈ {𝑖𝑛, 𝑜𝑢𝑡}, the

assortativity 𝑟𝛼,𝛽 for directed graphs is defined as

𝑟 (𝛼, 𝛽) =
∑
𝑖 ( 𝑗𝛼𝑖 − 𝑗𝛼) (𝑘 𝛽

𝑖
− 𝑘 𝛽)√︃∑

𝑖 ( 𝑗𝛼𝑖 − 𝑗𝛼)2
√︃∑

𝑖 (𝑘
𝛽

𝑖
− 𝑘 𝛽)2

(6.3)

where 𝑗𝛼
𝑖

is the 𝛼-degree of the source node for edge 𝑖, 𝑘 𝛽
𝑖

is the 𝛽-degree of the target node

for edge 𝑖, �̄�𝛼 is the average 𝛼-degree of source nodes, and 𝑘𝛼 is the average 𝛽-degree of

target nodes. For the annotated hypergraph, assortativity is defined with respect to the

roles (or annotations) in a manner similar to the directed graph representation in Equation

6.3, replacing the concept of edges with hyperedges and in-out degrees with role-specific (or

annotation-specific) node degrees.

For the example set of reactions in Equation 6.1, the assortativity coefficients for the

directed graph and the annotated hypergraph are reported in the Table 6.3 below.

Remark 4: These assortativity values could be used to answer questions such as – how

likely is it for products with high degree to connect to other products with high degrees, or
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Table 6.3: Degree assortativity coefficients for the directed and hypergraph representations
for the example set of four reactions

roles pair directed hypergraph

p-p -0.19 -0.43
r-r -0.53 -0.43
r-p 0.27 0.15

Table 6.4: Network structure overview for the directed and hypergraph representation for
the USPTO dataset

all 1976-1985 1985-2005 after 2005
graph hypergraph graph hypergraph graph hypergraph graph hypergraph

Num reactions 487,724 69,692 259,214 158,818
Num (hyper)edges 1,245,533 487,724 106,977 69,692 389,072 259,214 289,623 158,818

Num nodes 440,207 440,207 71,268 71,268 238,872 238,872 180,348 180,348

how likely is it that the reactants would connect to other reactants of similar degrees (appear

in reactions together), and so on.

6.2 Network statistics on organic chemistry dataset

In this section, the network of organic chemistry is studied through the lens of various

network statistics defined in the previous section using a standard organic chemistry reactions

database. The primary objective is to highlight the differences and similarities between the

network statistics for the directed graph and the hypergraph representations. At the end

of each section, chemistry insights that are drawn from such analyses along with the time-

evolution of these properties are presented.

6.2.1 Dataset description

The Jin’s USPTO-reactions dataset [49] derived from Lowe’s text mining work [60] for

chemical reactions on the US patents office applications (1976-2016) is the primary dataset

that is used to report and compare network statistics. Minimal preprocessing (removed

incorrect, incomplete, and duplicate reactions) is performed to allow for the network statistics

to capture network properties without possibly losing information due to such preprocessing
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exercises. Along with information on reactants and products, the dataset also contained

information on the year in which the reaction was reported, allowing us to investigate the

time-evolution of the network properties. The final dataset contained 487,724 single-product

reactions containing information on participating reactants, major products of each reaction,

and the year in which the reactions were reported.

Using this dataset, a directed graph and an annotated hypergraph-based networks of

organic chemistry is constructed. The directed graph representation was constructed using

the all-to-all node connectivity for each reaction. The other wiring possibilities are one-to-one

or many-to-one but it has been shown previously that the actual connectivity pattern does

not change the network structure and properties [154, 156]. The annotated hypergraph, on

the other hand, represents all the reactants and products as part of the same hyperedge with

node annotations based on

• reaction roles: ‘reactant’ or ‘product’

• relative length of SMILES strings in a reaction with respect to the median SMILES

length per reaction: ‘SMILES_short’, ‘SMILES_medium’, ‘SMILES_long’

• molecular weight across the entire dataset : ‘molwt_light’, ‘molwt_medium’,

‘molwt_heavy’

To perform an analysis of the time-evolution of network properties over different stages

of chemistry research, the data is split into three time regimes – regime 1 with reactions

reported from 1976 to 1985, regime 2 with reactions reported after 1985 until 2005, and

regime 3 with reactions reported from 2005 until 2016. An overview of the directed graph

and hypergraph representation obtained using the entire dataset and also using dataset in

the three time-regimes is presented in Table 6.4.

Remark 5: Note that in the case of the hypergraph, the number of hyperedges exactly

equals the number of reactions in the dataset, whereas for the graph representation, the
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number of edges is much higher. Of course, the number of nodes remain the same in both the

representations since each node corresponds to a unique molecule in both the representations.

6.2.2 Degree distributions

Degree distribution comparison

First, the degree distributions of both the incoming and outgoing degrees for the directed

graph and annotated hypergraph representations are compared. Recall from Section 6.1.2

that for the annotated hypergraph, the incoming degree is the same as the node-degree for

annotation ‘product’ and the outgoing degree is the same as the node-degree for annotation

‘reactant’. The degree distributions for the directed graph and for the various annotations

in the hypergraph (based on reaction roles, relative SMILES length, and molecular weights

as defined in the foregoing section) are presented respectively in Figures 6.5 and 6.6.

Figure 6.5: Degree distributions for outgoing (reactants) and incoming (product) edges in a
directed graph
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Figure 6.6: Degree distributions for the various hypergraph node-annotations (or roles)

Remark 6: Note that since our dataset only contains single-product reactions, the outgo-

ing degree distribution (reactants) is the same in both representations, and only the incoming

(product) degree distributions differ. This is because the directed graph representation for

a reaction would have as many incoming edges for the product as the number of reactants

whereas in the hypergraph representation the product would have just one incoming edge.

Power law fit for degree distributions

A visual inspection of the degree distributions indicates a possible power law distribution,

which is defined as

𝑝(𝑘) ∝ 𝑘−𝛼 (6.4)
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where 𝑝(.) is the degree distribution, 𝑘 is the degree, and 𝛼 is the scale-free or power law dis-

tribution parameter. The existence of a power law distribution points towards an underlying

network structure known as the scale-free network structure [147], ubiquitous in real-world

networks that often results in ‘small-world’ behavior. A mathematically rigorous fit is pre-

formed to ensure the existence of a power law using the powerlaw package in Python and

estimate the underlying scale-free distribution parameter. The power law fit for the incom-

ing degrees (products) for the directed graph and the hypergraph-based network of organic

chemistry are shown in Figure 6.7.

(a) Directed graph (b) Hypergraph

Figure 6.7: Scale-free distribution fit on incoming (products) degrees for (a) Directed graph
(b) Hypergraph; 𝐾𝑚 is the minimum degree cutoff threshold that is required as a hyperpa-
rameter in the powerlaw package.

it is observed that the degree distributions for both the directed graph and hypergraph

incoming degrees could be assumed to be coming from a power law distribution, thus pointing

towards an underlying scale-free network structure, agreeing with several other studies that

have shown that chemistry networks exhibit a scale-free or small-world behavior [156, 154,

158]. However, the scale-free parameter, 𝛼 differs in both the cases – 𝛼 is 2.51 for the

directed graph (close to 2.7 reported in [158, 154] on another reactions dataset) and 3.1 for

the hypergraph.
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In order to ascertain the difference in 𝛼 values for the degree distributions, the scale-free

parameter is estimated by randomly sub-sampling different fractions of the network in a

step-forward manner in time, i.e., by utilizing the reaction year information, reactions were

sampled starting from 1976 by sequentially sampling additional reactions from the following

years. A 0.1 − 1.0 fraction of the network was sub-sampled in steps of 0.1 and repeated 10

times to perform bootstrapping and compute the deviations in 𝛼. The results are presented

in Table 6.5. It is clear from the table that the scale-free distribution is indeed different in the

two representations and remains the same irrespective of the fraction of network sub-sampled

for estimating the distribution.

Table 6.5: Scale-free distribution parameter values, 𝛼, for different fractions of the network
sampled using step-forward sampling in time using 10 bootstrapped samples for each fraction

frac graph 𝛼 hyeprgraph 𝛼

mean std mean std

0.1 2.54 0.0009 3.1 0.0014
0.2 2.54 0.0003 3.18 0.0013
0.3 2.48 0.0008 3.13 0.0021
0.4 2.48 0.0005 3.1 0.0013
0.5 2.47 0.0001 3.02 0.0003
0.6 2.48 0.0004 3.03 0.0014
0.7 2.49 0.0005 3.04 0.0014
0.8 2.5 0.0003 3.07 0.0005
0.9 2.51 0.0001 3.1 0.0001
1.0 2.52 0.00014 2.97 0.0034

Time-evolution of scale-free network property

Next, he time-evolution of the scale-free parameter 𝛼 was studied by computing it across

the three time regimes – before 1985, 1985 – 2005, and after 2005. The degree distributions,

power law fit, and the estimated 𝛼 values for the power law fit are show in Figure 6.8.
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(a) Directed graph incoming degrees (b) Hypergraph ’product’ degrees

Figure 6.8: Scale-free fit for reactions reported in the three regimes with estimated 𝛼 in inset.

it is observed that the scale-free parameter 𝛼 has been increasing over the years with

significant increase post 2005, pointing towards accelerated growth nature of the hypergraph

network [146] and a similar observation has been made on reactions dataset in [158]. The

accelerated growth of the network of chemistry is also evident from the average path length

analysis presented in Section 6.2.3.

Inferences from degree distributions analysis

First, it is observed that the degree distributions in both the cases follow a scale-free

distribution, pointing towards an underlying mechanism of ‘preferential attachment’ or ‘pref-

erential linking’ where new nodes attach to existing nodes in the network with probability

proportional to their connectivity or node degrees. Mathematically, preferential attachment

is characterized by

Π(𝑘) ∼ 𝑘𝑐 (6.5)

where Π(𝑘) is the probability of a new node attaching to an existing node with degree 𝑘,

and 𝑐 is a constant controlling the degree of non-linearity in preferential attachment. This
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expression translates to the inference that chemistry growth is largely driven by a relatively

small set of highly important molecules that are highly connected (higher degree, 𝑘) and

they have a higher likelihood of playing a central role in the discovery of new molecules or

reactions because of the underlying phenomenon of preferential linking.

Second, for the directed and hypergraph representations, the parameter characterizing

the scale-free distributions is higher for the latter. This could be related to chemistry by

looking at the concept of ‘initial attractiveness’ in scale-free networks that assigns a non-zero

probability of connecting to an isolated node, given by

Π(𝑘) = 𝐴 + 𝑘𝑐 (6.6)

which ensures that, for non-zero values of 𝐴, Π(𝑘) ≠ 0 for disconnected nodes. The presence

of A in the expression for preferential attachment Π(𝑘) does not affect the scale-free structure

of the network but has a direct-impact on the 𝛼 parameter as,

𝛼 = 2 + (𝑘1 + 𝐴)/𝑘2 (6.7)

where 𝑘1, 𝑘2 are constants with values depending on the underlying generating model and

A characterizes the initial attractiveness of nodes. Thus, it could be inferred from Equation

6.7 that the initial attractiveness based on the hypergraph representation is higher than that

of the directed-graph representation since the former has a higher 𝛼 of 3.1 characterizing the

scale-free distribution compared with 𝛼 of 2.51 for directed-graph representation. Moreover,

the gradually increasing 𝛼 values for the scale-free distribution in both directed and hyper-

graph representations indicates that the initial attractiveness has been increasing over time,

with the trend being much more evident in the latter representation where 𝛼 grew from 2.98

in regime 1 to 3.75 in regime 3.

Third, a higher initial attractiveness translates to a higher likelihood of discovering new

connections (or reactions) to isolated nodes (rare or complex molecules). Since the initial
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attractiveness is the highest and much different in regime 3 (after 2005) than the other two

regimes, it could be inferred that in the recent years, there has been an emphasis on the

rewiring of existing reactions to create connections between previously disconnected nodes,

or the synthesis of rarer molecules. It will become clear from the analysis in the next section

on average shortest path length that the major driver of chemistry evolution in the recent

years is the rewiring of existing reactions.

6.2.3 Average path length

Average path length comparison

The average separation between the molecules (vertices) in terms of number of reactions

(edges) is captured by the average path length of the network. The average path length

was computed on the largest connected subgraph for both the representations. Recall from

the Section 6.1.3 that for the hypergraph, in order to make a one-to-one comparison, 𝑠 was

chose as 1 to generate a 1-linegraph and compute the 1-distance between nodes to compute

the average shortest path length for the hypergraph. The average shortest path lengths for

the largest connected subgraph obtained for the two representations for different fraction of

nodes sampled from the entire dataset using step-forward sampling is shown in Table 6.6.

Table 6.6: All pairs shortest path (or APSP) on the entire dataset

Fraction Reactions Directed Hypergraph

nodes APSP nodes APSP

1% 4,877 7,528 6.62 7,516 3.99
5% 24,386 26,222 5.98 26,176 3.75
10% 48,772 47,043 5.69 47,069 3.64
20% 97,544 91,903 5.36 91,870 3.52
50% 243,862 209,790 5.16 209,790 3.372

100% 487,724 411,396 5.11 411,396 3.252

2extrapolated values since the network size was prohibitively large for the hypernetX package in python
with no C-optimized libraries
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Time evolution of Average path length

Similar to the degree distribution analysis, the time-evolution of the average path lengths

of the networks was studied across the three time regimes. The average path length as

a function of the number of nodes in the network using time-based step-forward sampling

is shown in Figure 6.9 for both the representations for different fractions of the networks,

namely 1%, 5%, 10%, 20%, 50% and 100% of the network in each regime.

(a) Graph (b) Hypergraph

Figure 6.9: Average shortest path lengths for various regimes as a function of the number of
nodes in the sub-sampled graph.

it is observed that across both the representations, the average path length between the

nodes decreases exponentially as the number of nodes in the networks is increased. Moreover,

in both the cases, the average path lengths for the time regimes 1 and 2 are very similar to

each other but the average path length for regime 3 is significantly higher than those in

other two across all values of N. The phenomenon of decreasing path length as number of

nodes is increased has been reported in the literature as network densification [160] where

the network grows more and more dense over time – this makes sense for the USPTO dataset

containing patented reactions where the nodes are mostly sparsely connected and they get

more connected over time after either new reactions discovered, or existing nodes become

more connected.
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In terms of differences, the average path length is much smaller for the hypergraph repre-

sentation than for the directed graph. This could be an outcome of the frugal representation

of hypergraphs where number of edges is the same as number of reactions but that is not

the case with graphs. This is one of the major advantages of using hypergraphs – the edges-

based analysis has a one to one correspondence with reactions-based analysis, meaning that

the separation in terms of hyperedges between nodes corresponds exactly to the separation

between molecules in terms of reactions. Therefore, the average separation between nodes

in a hypergraph not only differs from a dyadic graph representation, but the separation

corresponds to the number of reactions (on average) the separate the nodes in the network.

Inferences from average path lengths analysis

First, it is observed that as expected, the average shortest path length for the directed

graph representation is higher than that of the hypergraph representation. This again is an

artifact of the directed graph representation which introduces several additional edges for

each reaction depending on the number or reactants and products per reaction. On the other

hand, in the hypergraph representation, since each hyperedge connects all the molecules

taking part in a reaction using a single hyperedge, the separation exactly equals the number

of reactions separating any two given nodes. Thus, in the directed graph average shortest

path length for the entire network is 5.11 while in the hypergraph it is 3.25.

Second, the average all pairs shortest distance for the hypergraph could be interpreted as

separation between nodes (or molecules) in terms of number of reactions. Recall that since

each hyperedge corresponds to a unique reaction, there exists a one to one mapping between

the number of reactions and the number of hyperedges separating the molecules. Thus, the

hypergraph network of organic chemistry indicates that the network of organic chemistry

is much more compact than previously understood with nearly 3.25 degrees of separation

between molecules, pointing towards an even stronger small-world nature than previously

observed with five degrees of separation [156].
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Third, in both the cases, the time-evolution of the network suggests that over time, net-

work densification takes place primarily due to the creation of links between existing nodes

in the network rather than by the addition (or discovery) of new nodes. A characteristic of

network densification is shrinking diameter [160], i.e., the average separation between nodes

decreases as the network grows, similar to the exponential decrease in average shortest path

length reported in Table 6.6 and Figure 6.9. This phenomenon is observed for both the

representations and across time-regimes, pointing towards an underlying process causing the

densification. There exist models for explaining such densification such as the community

guided attachment similar to preferential attachment but at a bigger community (or cluster)

level with separation between the communities [160]. However, the exact quantitative model

guiding densification in reaction chemistry network needs further studies. Nevertheless, den-

sification suggests that chemistry has been evolving mostly based on the rewiring of existing

reactions (edges) rather than the discovery of completely new molecules (nodes addition),

that has brought the molecules closer to each other over time. This is intuitive for the re-

action patents dataset that was used since most molecules are initially well separated given

that they are patented molecules/reactions which get more connected (reachable) over time

due to the discovery of new reactions over the years.

Third, the time-evolution analysis of the average shortest path length in Figure 6.9 sug-

gests that in regime 1 and 2, the average separation between molecules was nearly the same

for a given number of nodes, 𝑁 in the network. However, in regime 3, there was a significant

upward shift of average separation across all values of 𝑁. This suggests that the time-regime

post 2005 is characterized by the discovery of complex chemistry leading to the synthesis of

molecules via complex routes that has led to the increase in their average separation, possibly

due to significant advances in computational capabilities around this time. This increase in

average separation is more evident in the hypergraph representation than the directed-graph

representation.
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6.2.4 Assortativity

Assortativity comparison

To understand the mixing patterns of nodes in the two network representations, the

assortativity values are computed between different node-type (or role) combinations – ‘in’

and ‘out’ degree roles for directed graphs and pairwise roles-based node degrees for the

annotated hypergraph. Table 6.7 shows the assortativity values for the two representations

on the entire network. The assortativity values for the two representations agree qualitatively

with each other but differ in terms of their relative strengths. From Table 6.7, it is seen that

in the hypergraph representation, the reactant nodes exhibit strong assortative mixing (out-

out). On the other hand, the product-product and reactant-product exhibit very weakly

assortative or non-assortative behavior pointing towards a lack of degree correlation between

such nodes. Owing to the flexibility offered by annotations in the hypergraph, additional

Table 6.7: Assortativity values on the entire dataset

node-pairs directed graph hypergraph

in-in 0.0107 0.0734
out-out 0.0049 0.1159
out-in 0.0187 0.0032

assortativity were computed between node roles of reactant/product with roles based on

molecular weights and relative SMILES length of molecules, as shown in Tables 6.8 and 6.9.

it is observed that reactant-MWlight and reactant-SMILESshort exhibit strong assortative

mixing whereas this is not usually the case with other node-role pairs.

Table 6.8: Hypergraph assortativity between reactant & product roles with roles based on
molecular weights

MW𝑙𝑖𝑔ℎ𝑡 MW𝑚𝑒𝑑𝑖𝑢𝑚 MWℎ𝑒𝑎𝑣𝑦

reactant 0.1337 0.0074 0.0061
product 0.0119 0.0003 0.0004
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Table 6.9: Hypergraph assortativity between reactant & product roles with roles based on
relative SMILES lengths

SMILES𝑠ℎ𝑜𝑟𝑡 SMILES𝑚𝑒𝑑𝑖𝑢𝑚 SMILES𝑙𝑜𝑛𝑔

reactant 0.1782 0.0713 0.0015
product 0.0237 0.0083 -0.0009

Time evolution of assortativity

To study the evolution of mixing patterns in the network over time, the time-evolution

of assortativity was studied during the three time regimes. The assortativity values for the

in-in, out-out, and out-in node-role pairs are shown in Table 6.10 below.

Table 6.10: Time evolution of assortativity for the directed graph and hypergraph for various
node-role pairs

node-pairs Directed graph Hypergraph

before 1985 1985-2005 after 2005 before 1985 1985-2005 after 2005

in-in 0.0630 0.0157 0.0175 0.3623 0.2302 0.1674
out-out 0.0047 0.0042 0.0069 0.2368 0.2241 0.2259
out-in 0.0274 0.0257 0.0286 0.0005 0.0057 0.0076

it is observed from the table above that the directed-graph representation does not show

any strong trend in various assortativity values, an observation also reported in [156]. On

the other hand, the hypergraph representation shows a decreasing assortativity of in-in nodes

over time and an increasing assortativity of out-in nodes. A further analysis on additional

assortativity values with different node-role pairs reveal additional trends as shown in Figure

6.10. It is observed that reactants show assortative mixing with nodes with MW𝑙𝑖𝑔ℎ𝑡 across

time regimes, whereas products show assortative mixing with MWℎ𝑒𝑎𝑣𝑦 before 1985. Simi-

larly, it is also observed that reactants show assortative mixing with nodes with SMILES𝑠ℎ𝑜𝑟𝑡

and SMILES𝑚𝑒𝑑𝑖𝑢𝑚 across time regimes, whereas products show assortative mixing with

SMILES𝑠ℎ𝑜𝑟𝑡 and SMILES𝑙𝑜𝑛𝑔 before 1985 and with SMILES𝑚𝑒𝑑𝑖𝑢𝑚 from 1985-2005.
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(a) Assortativity between MW and reactant/product roles. Reactants show assortative mixing
with nodes with MWlight across time regimes, whereas products show assortative mixing with
MWheavy before 1985.

(b) Assortativity between relative SMILES length and reactant/product roles. Reactants show
assortative mixing with nodes with SMILESshort and SMILESmedium across time regimes, whereas
products show assortative mixing with SMILESshort and SMILESlong before 1985 and with
SMILESmedium from 1985-2005.

Figure 6.10: Time evolution of assortativity for reactants and products with respect to
additional node annotations (or roles).
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Inferences from assortativity analysis

The assortativity analysis highlights another limitation of the directed-graph represen-

tation in terms of obscuring the underlying network characteristics induced by the network

wiring scheme. Based on the observations in Table 6.7 for the directed-graph representation,

it appears that the network is non assortative or very weakly assortative with respect to all

the node-role pairs. It was shown in [156] that this is an artifact of the network preprocessing

and the assortativity values change drastically if one chooses to perform network preprocess-

ing to remove parallel edges. On the contrary, the hypergraph representation shows that the

network is assortative with respect to certain node-role pairs such as out-out degree assorta-

tivity indicating that commonly used reactants tend to take part in reactions together.

Second, due to the flexibility of the hypergraph representation in terms of allowing ad-

ditional node annotations, additional assortativity analyses are performed with respect to

different node-role pairs as shown in Tables 6.8 and 6.9. It was observed that reactants are

assortative with molecules of light molecular weight and relatively short/medium SMILES

length, highlighting the mixing patterns of reactant nodes in the network. Products, on the

other hand, seem to be non-assortative with these properties, thus highlighting the wide

spectrum of products with varying degrees of complexity present in the dataset.

An analysis of the time-evolution of assortativity presented in Table 6.10 shows node-

mixing trend across time-regimes, with no clear trend in assortativity for directed-graphs.

However, from the hypergraph representation it is observed that the reactants exhibit as-

sortative mixing at nearly the same level across time regimes, whereas the products show

a decreasing assortativity over time. The latter points towards the general trend in earlier

years (regime 1) to discover several different routes for synthesizing a given molecule, which

has been decreasing over the years (but still significant) due to the synthesis of new products

molecules with different chemistry.

Finally, based on the time-evolution of assortativity with respect to additional node an-

notations in Figure 6.10, it is observed that reactants are assortative at the same level with
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heavy molecular weight as well as relative molecular complexity across time regimes, with

decreasing assortativity as the molecular weight or complexity is increased. Products on the

other hand, show a positive assortativity before 1985 with heavy and complex molecules, in

regime 2 assortative with medium complexity, and non-assortative in regime 3 with all roles.

The latter indicates towards the diversity of products synthesized in the recent years.

6.3 Additional hypergraph statistics

Even though many dyadic network properties could also be defined equivalently for hy-

pergraphs, sometimes it is necessary to work with the directed graph framework for reasons

among – interpretability from a traditional graph-theoretic standpoint, easy availability of

tools for computation of dyadic properties, or aversion towards adopting hypergraphs due to

their seemingly high complexity. The annotated hypergraph could, therefore, be projected

as a directed graph with edge-weights defined using a role-interaction kernel [159]. The role-

interaction kernel defines the mapping of the annotated hypergraph to a projected-directed

graph, that maps various nodes to annotations in the hypergraph using weighted edges. The

following three kernels are used:

• 𝑅1 =


1 0

0 0

 : each hyperedge split into multiple weighted directed edges from reactants

to products each with weight 1; emphasis is on forward reactions only

• 𝑅2 =


0 0.75

0.25 0

 : each hyperedge split into multiple weighted directed edges with

directed edges from reactants to products with weight 0.75 and also directed edges in

the reverse direction (from products to reactants) with weight 0.25; unequal emphasis

on forward and inverse reactions

• 𝑅3 =


0 0

0 1

 : each hyperedge split into multiple weighted directed edges in the reverse

direction (from products to reactants) each with weight 1; emphasis on inverse reactions
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only

Using such projected dyadic graphs, two additional studies are preformed on the entire net-

work – first, a PageRank [148] analysis of reaction nodes to identify the most important

molecules, and second, a graph-based community-detection (or clustering) [149] to identify

clusters in the reaction networks based on their connectivity patterns.

6.3.1 PageRank analysis

The PageRank algorithm was originally proposed for ranking of webpages on the internet

[148] based on the number and quality of links to webpages and is based on a random-surfer

model that performs random walks along incoming and outgoing edges from webpages. A

page that has a higher likelihood of being visited by a random surfer is therefore considered

more important by PageRank, thus requiring both higher connectivity as well as connectivity

to other important webpages for higher PageRank.

Extending the idea of PageRank to chemical reactions and molecules, the set of molecules

that are most important based on their connectivity (high reactivity) as well as their connec-

tivity to other important molecules (chemical importance due to ease of synthesizability or

criticality for other compounds) could be identified. Thus, a molecule with high PageRank

in a network of chemical reactions should be crucial both from a reactivity/synthesizability

as well as reachability/criticality standpoint. In contrast, a molecule with merely the highest

degree does not say much about the molecule except that the molecule participates in many

reactions.

Using the three role-interaction kernels – R1, R2 and R3 defined above, the PageRank

and degree centrality of nodes in the resulting network defined as 𝑑𝑣/𝑑𝑚𝑎𝑥 where 𝑑𝑣 is the

degree of node 𝑣 and 𝑑𝑚𝑎𝑥 is the maximum degree across all nodes in the network are com-

puted. Since PageRank and degree centrality are two different measures, their absolute values

should not be compared and only the relative values or ranked order of molecules should be

compared. The top-5 molecules based on PageRank and degree centralities computed using
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the weighted directed reaction networks obtained using different role-interaction kernels are

shown in Figure 6.11.

Figure 6.11: PageRank and degree centrality analysis for the three role interaction kernels

with 𝑅1 =

[
0 1
0 0

]
, 𝑅2 =

[
0 0.75

0.25 0

]
, and 𝑅3 =

[
0 0
1 0

]
corresponding to forward edges only,

forward and retrosynthetics edges, and retrosynthetic edges only.

Based on the above ranked order of molecules, it is first observed that the molecules that

are important from a PageRank standpoint are not the same as those important from a degree

centrality standpoint. Second, across the role interaction kernels, the ranked order changes,

i.e., molecules critical based on R1 kernel-based projection (forward edges) of hypergraph

differ from those based on R3 kernel-based projection (retrosynthetic edges). This highlights

the flexibility of the hypergraph reaction representation in incorporating custom importance

for forward and retrosynthetic reaction directions through role-interaction kernels. Such an

analysis of molecular importance in a reaction network would have application in optimizing

reaction networks, designing robust supply chain networks, and performing efficient product

design.
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6.3.2 Community detection analysis

To study the formation of communities or clusters in the reaction network based on the

mutual connectivity patterns and node-densities, graph-based clustering is performed on the

network of reactions. The Leiden algorithm [149] is used to perform optimal graph partition-

ing that results in well-connected set of dense nodes in the network (called communities) and

is a suitable algorithm for weighted, directed networks. For this study, the R2 role-interaction

kernel is used to preserve both forward and retrosynthetic edges but with unequal weights

in the network. The applications of such a graph-based community detection exercise is

to get a general sense of the distribution and connectivity patterns of reactions in a large

reactions dataset and understand the possible different types of reactions in the absence of

any other information about the reactions. Note that the projected hypergraph is a dyadic,

weighted directed graph obtained by using a role-interaction kernel that decomposes a hy-

peredge into a set of weighted directed edges. Community detection is performed on such

projected hypergraph. The alternative is to perform clustering directly using the hypergraph

representation. However, given the scale of the hypergraph network of organic chemistry, the

current clustering methods are computationally prohibitive.

For the entire network, the Leiden algorithm identifies nearly 65, 000 communities with a

size-distribution as shown in Figure 6.12(a); the top-8 largest communities are shown in Fig-

ure 6.12(b) with different color for each identified community, and the top-100 communities

are show in Figure 6.12(c).
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(a) Size distribution of identified com-
munities

(b) Top-8 largest communities with
nodes in each community in a different
color

(c) Top-100 largest communities indicating showing clear regions of
high and low densities along with an island community disconnected
from the rest of the network

Figure 6.12: Community detection results on the weighted projected directed graph obtained
using role-interaction kernel R2.
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It is observed from Figure 6.12(a) that most of the communities are really small in size

consisting of less than 10 reactions, whereas there are around 8 biggest communities contain-

ing over 60 reactions in each of them, as shown in Figure 6.12(b). The close-knit nature of

these communities point towards a possible segregation of different types of reactions just

based on their connectivity patterns and the nodes (molecules) that take part in those reac-

tions. This idea is utilized to perform reaction type classification in the next section. Finally,

the top-100 communities visualized in Figure 6.12 shows clear regions of high density with

highly connected and localized clusters, and regions of low density further apart from the

biggest clusters. In addition, it is also observed that there is a cluster that is completely sep-

arated from all the other communities and is therefore an island community. The existence

of core-periphery regions in the reaction network was also shown in [155] but the analysis

was not based on graph clustering but on identifying strongly connected components in the

network by representing reactions using a single directed edge from the heaviest reactant to

the heaviest product in each reaction. In the community detection algorithm, the direction-

ality as well as the weights of the edges are taken into account, making it more flexible and

the results more generalizable.

6.4 Application in reaction class prediction problem

In the foregoing sections, it is shown how the hypergraph representation could be used to

uncover hidden insights contained in large reactions datasets and study their time-evolution

through network-theoretic properties. In this section, the usefulness of the hypergraph rep-

resentation in capturing the context of reactions and thereby their reaction type or class is

demonstrated. We, therefore, use the hypergraph representation in the reaction-type clas-

sification problem where the objective is to estimate the reaction class from a given set of

reactants and products. This problem has practical applications in retrosynthetic planning

where several different routes could be eliminated just by knowing the possible reaction types.

The other problems where such a problem would find significance is the reaction feasibility
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estimation problem where the objective is to estimate the feasibility of a reaction given the

possible participating molecules. Other studies that have proposed data-driven frameworks

for reaction classification problems are [161, 162, 163].

6.4.1 Dataset description

For this problem, since reaction class information for reactions is required, a subset of the

USPTO reactions dataset that is typically used for retrosynthesis problem, containing about

50K reactions annotated with their corresponding reaction class from 10 possible classes is

used. The equivalent reaction hypergraph network for this dataset is generated. The largest

connected component in the hypergraph is used since the hyperedge (or reaction) embedding

framework used for representing reactions subsequently in the classification framework is

dependent on the connectivity and neighborhood contextual information. The distribution

of reactions across different reaction classes in the sub-hypergraph is shown in Table 6.11

below.

Table 6.11: Distribution of reactions across different reaction classes in the largest connected
subcomponent

Rxn class Rxn name Num rxns

1 Heteroatom alkylation and arylation 11,526
2 Acylation and related processes 8,488
3 C–C bond formation 3,909
4 Heterocycle formation 588
5 Protections 646
6 Deprotections 760
7 Reductions 459
8 Oxidations 305
9 Functional group interconversion (FGI) 1,168
10 Functional group addition (FGA) 196
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6.4.2 Reaction embeddings using random hyperwalks

To perform reaction classification by training a data-driven classifier, numeric represen-

tations for reactions that are generated from their hypergraph representations are need to be

used as features to train a classifier. Hyperedge (or reaction) embeddings are generated by

adapting the deep hyperedges framework [151] and modifying it to incorporate the contex-

tual information contained in chemical reactions, as explained in the pseudocode provide in

Algorithm ??.

The hyperedge embeddings are generated by performing random hyperwalks that cap-

ture the co-member information in each vertex by traversing hyperedges in the hypergraph

network of chemical reactions. For each hyperedge, the hyperwalk starts at a randomly se-

lected reactant node that is part of the current hyperedge, and either hops to a node in the

adjacent hyperedge or stays in the current hyperedge to select another reactant node in the

current hyperedge. This is repeated until the desired length of the hyperwalk is achieved.

The adjacent hyperedge traversal is done only with respect to reactants since this would –

first, differentiate reactants from products, and second, mimic chemistry more realistically

where only those reactions are accessible where either the current reactants participate as

reactants or the product of the current reaction participates as reactant. Such a random

hyperwalk would closely mimic a chemist performing experiments randomly.

Formally, a node 𝑣𝑚 is selected at random with the annotation ‘reactant’ in a hyper-

edge 𝑒𝑖. The probability of traversing an adjacent hyperedge is inversely proportional to

the cardinality of the current vertex; i.e. 𝑝 = 𝑚𝑖𝑛( 𝛼
|𝑣𝑚 | + 𝛽, 1) where 𝛼 and 𝛽 are tunable

hyperparameters and | 𝑣𝑚 | is the cardinality of the vertex 𝑣𝑚. As in a random walk, if 𝑝

is less than a randomly generated number, the traversal is performed to an adjacent hyper-

edge; otherwise the current hyperedge is added to the random walk and the next is chosen

randomly from the adjacent hyperedges of the current vertex 𝑣𝑚. For each hyperedge 𝑒𝑖, 50

random walks of length 50 each are constructed. Examples of such hyperedge random walks

on the four example reactions in Equation 6.1 is shown in Table 6.12. The hyperwalks are
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then embedded into dense vectors of dimension 𝑅256 using skip-gram approach for generating

embeddings [21]. At the end of the hyperedge embedding exercise, a 256 dimensional vector

for each hyperedge in the network would be generated.

The pseudocode for the hyperwalk generating algorithm is presented in Algorithm ??

and example hyperwalks using the example set of four reactions in Equation 6.1 is shown in

Table 6.12. A 2D visualization of the resulting 256-dimensional hyperedge embeddings on

the entire dataset of reactions is visualized in Figure 6.13.

Table 6.12: Two example hyperwalks generated for each reaction (hyepredge) in the example
set of reactions. For each walk, 𝑣𝑖

𝑒𝑘−→ 𝑣 𝑗 represents a walk along hyperedge 𝑒𝑘 via nodes 𝑣𝑖
and 𝑣 𝑗 . The hyperwalks for each hyperedge are the sequential collection of such 𝑒𝑘 ’s starting
at that hyperedge.

Hid Hyperwalk

0 𝐵, 0
1−→ 𝐶

2−→ 𝐶
2−→ 𝐶

3−→ 𝐷
3−→ 𝐴

0−→ 𝐴
3−→ 𝐴

3−→ 𝐴
3−→ 𝐴

𝐵, 0
1−→ 𝐵

1−→ 𝐶
2−→ 𝐶

2−→ 𝐶
3−→ 𝐶

3−→ 𝐶
1−→ 𝐶

2−→ 𝐶
1−→ 𝐶

1 𝐸, 1
2−→ 𝐸

1−→ 𝐶
2−→ 𝐶

1−→ 𝐶
2−→ 𝐷

3−→ 𝐷
3−→ 𝐷

2−→ 𝐸
1−→ 𝐸

𝐵, 1
1−→ 𝐸

3−→ 𝐸
2−→ 𝐸

1−→ 𝐸
1−→ 𝐸

2−→ 𝐷
3−→ 𝐴

3−→ 𝐴
0−→ 𝐴

2 𝐸, 2
1−→ 𝐵

1−→ 𝐵
0−→ 𝐵

0−→ 𝐴
0−→ 𝐴

0−→ 𝐴
3−→ 𝐷

2−→ 𝐷
2−→ 𝐷

𝐶, 2
2−→ 𝐶

1−→ 𝐶
3−→ 𝐶

3−→ 𝐶
2−→ 𝐸

1−→ 𝐸
2−→ 𝐶

2−→ 𝐶
3−→ 𝐴

3 𝐴, 3
3−→ 𝐴

0−→ 𝐴
0−→ 𝐴

0−→ 𝐵
0−→ 𝐵

1−→ 𝐵
0−→ 𝐴

3−→ 𝐷
3−→ 𝐷

𝐶, 3
2−→ 𝐶

2−→ 𝐸
2−→ 𝐸

3−→ 𝐶
1−→ 𝐶

3−→ 𝐶
1−→ 𝐵

0−→ 𝐴
0−→ 𝐴
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Figure 6.13: A 2D t-SNE projection of the 256-dimensional hyperedge embeddings

6.4.3 Reaction class prediction results

To predict the reaction classes, a one-vs-rest classifier is trained based on support vector

machines (SVM) that learns a multi-class classification decision boundary. A randomized

cross validation search strategy to perform hyperparameter tuning of the SVM model with

a radial basis function. A detailed description of the SVM model and the mathematical

framework that underlies it is provided in [88].

The precision and recall metrics for each of the reaction classes computed using the test-

set containing unseen reactions at the training stage are shown in Figure 6.14 below.
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(a) (b)

Figure 6.14: Performance metrics for the multi-class reaction classification on the test-set.
(a) Precision, (b) Recall.

From the results above, it is observed that the trained model accurately predicts the

reaction class for most of the reaction classes except for the reaction classes – reductions,

deprotections, and heterocycle formation. The precision metrics across all 10 reaction classes

shown in Figure 6.14(a) highlights the model’s high precision in identifying the correction

reaction class. However, since the recall shown in Figure 6.14(b) is lower for the three un-

derperforming classes, there could be overlapping reaction classes in the feature (embedding)

space. This is indeed observed for these classes in 2D visualization of the learned embed-

dings in Figure 6.13. The separation between various reaction classes could be addressed

in future by also incorporating additional molecular descriptors that, in combination with

the connectivity-specific embeddings, would more accurately distinguish the different reac-

tion types. Nevertheless, the embeddings generated just based on the reactions and node-

connectivity information in the hypergraph representation seems to have separated a majority

of the reaction types into distinct clusters, consequently resulting in the model learning to

predict them accurately. This again highlights the ability of hypergraphs to capture reaction

context accurately.
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6.5 Conclusions

Network theory offers natural tools and techniques for understanding the growth of chem-

istry over time by representing reactions as time-evolving real-world networks. Though most

of the work in this area has been done using a dyadic graph representation, a hypergraph

representation with hyperedges between nodes for representing reactions is a more natural,

intuitive, and flexible representation that allows for the incorporation of additional reaction

context.

It is shown that the hypergraph representation is more flexible, allows for incorporation

of reaction-specific node context, and facilitates one-to-one correspondence of network prop-

erties with chemistry. Detailed network statistics of the resulting hypergraph network of

organic chemistry were computed and the time evolution of these properties was studied.

As with several previous studies, it is observed that the network exhibits a scale-free be-

havior with preferential attachment of nodes, has small average path length indicative of

small-world nature, and shows assortative mixing with respect to certain node types. All the

network statistics presented, namely, degree distributions, average path length, assortativity

or degree correlations, PageRank analysis, and community detection, were correlated with

chemistry inferences that were drawn from such analysis. In addition, it was discovered that

the network exhibits the phenomenon of initial attractiveness and network densification as

chemistry evolves over time time.

To demonstrate the AI-applications of the hypergraph representation of chemical re-

actions, reaction classification was performed using embeddings generated from chemistry-

informed random walks on hyperedges. The embeddings resulted in well-separated clusters for

different reaction classes and consequently, resulted in accurate reaction classification results.

Future work involves extending this study to diverse (and possibly bigger) datasets across

various subdomains, incorporating additional molecular descriptors for generating hyper-

edge embeddings for reaction classification, utilizing the results in a retrosynthestic planning

framework, and performing hyperedge prediction to discover new reactions.
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Epilogue

Summary of research

Several domain-informed language modeling frameworks were presented for a va-

riety of central problems in process systems engineering. Although these problems spanned

several different scales, language models combined with important domain knowledge were

shown to offer several advantages over purely data-driven or purely process knowledge-based

solutions across all the problems. Such integration of domain knowledge helped sidestep the

necessary condition of availability of large amounts of data to the scale not encountered in

PSE for efficient training of language models. More importantly, this resulted in the devel-

opment of systems that suffer from a mismatch between data-driven predictions and process

knowledge, which might otherwise lead to costly mistakes in process systems engineering.

Integration of the rich domain knowledge developed over several decades in PSE and compu-

tational advantages of language models is therefore shown to be necessary to develop systems

that are more reliable, scalable, and explainable while also solving problems in an intelligent

and consistent manner. Highlights of the major achievements and contributions of this thesis

are outlined below.

• Molecular structure-to-property prediction: A molecular representation learning frame-

work, grammar2vec, was developed for learning efficient, dense vector representations

of molecules and is analogous to the word2vec framework in natural language. Gram-

mar2vec was shown to result in chemistry-rich molecular descriptors, and more ac-
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curate, and more interpretable machine learning models for thermodynamic property

prediction.

• Computer-aided forward and retrosynthesis reaction prediction: Computer-aided for-

ward and retrosynthesis (or inverse) reaction prediction was formulated as sequence-

to-sequence and tree-to-sequence modeling problems, respectively. SMILES grammar,

analogous to context-free grammar in natural language, was shown as a promising

alternative representation compared to the commonly used text-based SMILES repre-

sentation. Grammar representations were shown to result in lower conditional entropy

for the prediction task, relatively simpler model architectures, and reduced grammati-

cally invalid predictions. The retrosynthesis prediction was formulated as a tree-to-

sequence modeling problem, and the transformer model was adapted on the basis

of group contribution-like tree convolution operations. The resulting model achieved

nearly state-of-the-art performance with relatively simpler models and was in agreement

with reaction chemistry principles, thus highlighting the advantages of incorporating

chemistry knowledge in language models.

• Process flowsheet representation and generation: A novel framework, eSFILES or ex-

tended Simplified Flowsheet-Input Line-Entry Scheme, was developed to hierarchically

represent chemical flowsheet information. The developed framework efficiently cap-

tured flowsheet information at different levels using purely text-based flowsheet repre-

sentations (akin to SMILES strings for molecules), flowsheet hypergraph-based repre-

sentations, and process ontology connected to hypergraph-based representations. The

eSFILES framework enabled the integration of process knowledge and artificial intel-

ligence techniques to solve flowsheet synthesis and design problems using hybrid AI

methods. Linguistics-inspired flowsheet syntax grammar rules were also developed to

ensure a correct and consistent flowsheet representation.

• Automated pharmaceutical information extraction: SUSIE, or Schema-based Unsu-
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pervised Semantic Information Extraction framework, was developed that facilitated

end-to-end relevant information extraction from pharmaceutical documents. A custom

pharmaceutical drug-developed ontology was also developed to capture domain-specific

concepts. SUSIE comprised domain ontologies for representing important concepts, a

weak supervision framework for transforming unlabeled datasets to labeled datasets,

a fine-tuned BioBERT model to learn a generalizable pattern for handling new docu-

ments, contextualization modules to capture relevant context associated with impor-

tant entities, and a relation extraction approach for automatically generating knowledge

graphs.

• Network of organic chemistry and reaction classification: A hypergraph representation

for studying the network of organic chemistry was shown to be a more natural, intu-

itive, and flexible representation that allowed the incorporation of additional reaction

context. Detailed network statistics were computed, and the time evolution of these

properties was studied. The network of organic chemistry was observed to exhibit a

scale-free behavior with preferential attachment of nodes, a small average path length

indicative of the small-world nature, and assortative mixing with respect to certain

node types. Reaction classification was performed using embeddings generated from

chemistry-informed random walks on hyperedges. The embeddings resulted in well-

separated clusters for different reaction classes, and consequently, resulted in accurate

reaction classification results.

Future recommendations and outlook

Given that the cost of a mistake in PSE applications is higher by orders of magnitude

compared to other domains like game playing, natural language translation, or text analysis,

a fundamental integration of process knowledge with data-driven approaches is necessary to

ensure its success from a practical standpoint. In the current era of large language models

(LLMs) comprising billions of model parameters and trained on terabytes of data, an impor-
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tant differentiator that is often overlooked is that such data-driven approaches need to be

adapted appropriately before they can be used in engineering domains like process systems

engineering. Our domain does not lack a formal understanding of the underlying process,

unlike computer science, for example, in tasks like image recognition. Thus, ignoring decades

of fundamental domain knowledge and well-established principles would lead to suboptimal,

difficult, and reinventing the wheel scenarios where a machine learning approach is praised for

rediscovering fundamental principles or governing equations that are well known and widely

understood.

Going forward, a broader integration of the underlying physics, chemistry, and formal

theory with data-driven models is required. This would need an appropriate knowledge

representation and imposing prior knowledge-based constraints – an appropriate knowledge

representation is crucial to ensure the problem formulation, underlying governing principles,

and so on, are captured appropriately; imposing prior knowledge-based constraints would

require a deeper understanding of the model architectures used in data-driven models so

that they could be adapted to impose domain-based restrictions. It is hoped that this thesis

would provide guidelines for the development of hybrid AI systems through the various do-

main knowledge integration frameworks presented for multiscale problems in process systems

engineering.
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Appendix A: SMILES grammar

The SMILES grammar used in this work is the same as that used in our previous works [28,

29]. This grammar comprises 80 production rules with 24 non-terminals symbols specifying

the different structural components of a SMILES string. All the production rules for the

grammar used in our work are summarized in Table A.1. The first and the last production

rules, SMILES −→ CHAIN and NOTHING −→ NONE, are additional rules included signifying the

start and end of a SMILES string, which is analogous to the <START> and <END> tokens in

natural language processing marking the beginning and the end of sentences, respectively.

Table A.1: SMILES grammar used for retrosynthesis and forward reaction prediction. ‘|’
separates multiple production rules applicable for the same non-terminal symbol.

S.No Production rules

1 SMILES −→ CHAIN

2 ATOM −→ BRACKET_ATOM | ALIPHATIC_ORGANIC | AROMATIC_ORGANIC

3 ALIPHATIC_ORGANIC −→ B | C | N | O | S | P | F | I | Cl | Br

4 AROMATIC_ORGANIC −→ c | n | o | s | p

5 BRACKET_ATOM −→ LEFT_BRACKET BAI RIGHT_BRACKET

6 BAI −→ SYMBOL BAC

7 BAC −→ CHIRAL BAH | BAH | CHIRAL

8 BAH −→ HCOUNT BACH | BACH | HCOUNT

9 BACH −→ CHARGE

10 SYMBOL −→ ALIPHATIC_ORGANIC | AROMATIC_ORGANIC

11 DIGIT −→ 1 | 2 | 3 | 4 | 5 | 6 | 7

12 CHIRAL −→ @ | @@

13 HCOUNT −→ H | H DIGIT

14 CHARGE −→ - | +

15 BOND −→ - | = | # | / | \
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Table A.1: SMILES grammar used for retrosynthesis and forward reaction prediction. ‘|’
separates multiple production rules applicable for the same non-terminal symbol.

S.No Production rules

16 RINGBOND −→ DIGIT | BOND DIGIT

17 BRANCHED_ATOM −→ ATOM | ATOM RB | ATOM BB | ATOM RB BB

18 RB −→ RB RINGBOND | RINGBOND

19 BB −→ BB BRANCH | BRANCH

20 BRANCH −→ LEFT_BRACKET CHAIN RIGHT_BRACKET | LEFT_BRACKET BOND CHAIN RIGHT_BRACKET

21 CHAIN −→ BRANCHED_ATOM | CHAIN BRANCHED_ATOM | CHAIN BOND BRANCHED_ATOM

22 LEFT_BRACKET −→ BRANCHED_ATOM | CHAIN BRANCHED_ATOM | CHAIN BOND BRANCHED_ATOM

23 RIGHT_BRACKET −→ BRANCHED_ATOM | CHAIN BRANCHED_ATOM | CHAIN BOND BRANCHED_ATOM

24 NOTHING −→ NONE
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Appendix B: Additional cross-attention maps from G-MATT

The attention maps were computed for a more complex reaction

COc1ccc(-c2ccc(C)cc2)cc1

→ COc1ccc(Br)cc1.Cc1ccc(B(O)O)cc1 in Figure B.1 and CCOC(=O)CSCCCC(O)c1ccco1

→ OC(CCCBr)c1ccco1.CCOC(=O)CS in Figure B.2.
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(a) An example top-1 prediction to study the transformer attention map

(b) Average attention scores for top-1 prediction on the retrosynthesis reaction
CCOC(=O)CSCCCC(O)c1ccco1 → OC(CCCBr)c1ccco1.CCOC(=O)CS extracted from the
transformer decoder cross-attention sublayer

Figure B.1: Molecular attention map for the SMILES grammar tree of the product and
SMILES strings of the reactants (precursors) for an example reaction203



(a) An example top-1 prediction to study the transformer attention map

(b) Average attention scores for top-1 prediction on the retrosynthesis reaction
COc1ccc(-c2ccc(C)cc2)cc1 → COc1ccc(Br)cc1.Cc1ccc(B(O)O)cc1 extracted
from the transformer decoder cross-attention sublayer

Figure B.2: Molecular attention map for the SMILES grammar tree of the product and
SMILES strings of the reactants (precursors) for an example reaction
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Appendix C: Flowsheet grammar syntax rules

A complete list of formal syntax rules developed for the SFILES grammar are shown in

Table C.1. Each syntax rule comprises non-terminal and terminal symbols. The terminal

symbols are written in lowercase with quotes and correspond to the SFILES vocabulary

(or list of symbols). The non-terminal symbols on the other hand are written in block

letters and correspond to the underlying meta information corresponding to the various

process equipment, streams, materials, and so on, organized hierarchically based on process

knowledge. The syntax rules define how the symbol on the left hand side is manipulated to

give rise to the symbols on the right hand side, which could be a combination of non-terminal

and terminal symbols. In other words, all syntactically valid SFILES string could be obtained

by sequentially applying the syntax rules presented in Table C.1, always starting with the

first rule SFILES −→ PG, and applying the rest wherever applicable. Thus, a hierarchical tree

could be constructed for each SFILES string using these syntax rules similar to that shown

in Figure 4 in the manuscript.

Table C.1: Developed grammar syntax rules corresponding to the text-based SFILES repre-
sentation for flowsheets.

Rule Grammar rules Meaning/explanation

𝑅1 SFILES −→ PG top node resulting into a PG node

𝑅2 PG −→ PA PG process groups (PG) contains one or

more process-atoms (PA)

𝑅3 PG −→ PA PG with exactly one PA

𝑅4 PG −→ BRANCHED_PG PG enclosed in square brackets; used

when a given process group has two or

more process bonds as output
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Table C.1: Developed grammar syntax rules corresponding to the text-based SFILES repre-
sentation for flowsheets.

Rule Grammar rules Meaning/explanation

𝑅5 BRANCHED_PG −→ SQBRAC1 PA SQBRAC2 PA enclosed in square brackets; used

when a given process group has two or

more process bonds as output

𝑅6 BRANCHED_PG −→ SQBRAC1 PA RECYCLE_OUT SQBRAC2PA followed by recycle out stream en-

closed in square brackets; used when a

given process group has two or more pro-

cess bonds as output along with a recy-

cle stream

𝑅7 BRANCHED_PG −→ PA Branched PG with exactly one PA

𝑅8 PA −→ BRAC1 PA BRAC2 PA enclosed in parentheses

𝑅9 PA −→ EQUIPMENT PA that is a process equipment

𝑅10 PA −→ INLET PA that is an inlet stream

𝑅11 PA −→ OUTLET PA that is an outlet stream

𝑅12 INLET −→ BRAC1 INLETmark STREAM BRAC2 inlet as inlet-mark followed by stream in

parentheses

𝑅13 INLET −→ INLETmark STREAM flowsheet inlet stream represented as

inlet-mark followed by stream process-

atom enclosed in parentheses

𝑅14 OUTLET −→ BRAC1 OUTLETmark STREAM BRAC2 flowsheet outlet stream as outlet-mark

followed by stream process-atom in

parentheses

𝑅15 OUTLET −→ OUTLETmark STREAM outlet as outlet-mark followed by stream

𝑅16 STREAM −→ MAT stream with a single material

𝑅17 STREAM −→ MAT STREAM a recursive rule that allows a process

stream to contain more than one mate-

rial

𝑅18 EQUIPMENT −→ REACTOR equipment that is a reactor
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Table C.1: Developed grammar syntax rules corresponding to the text-based SFILES repre-
sentation for flowsheets.

Rule Grammar rules Meaning/explanation

𝑅19 EQUIPMENT −→ SEP equipment that is a separator

𝑅20 EQUIPMENT −→ DIV equipment that is a divider

𝑅21 SEP −→ DISTIL separator that is a distillation column

𝑅22 SEP −→ MEMBRANE separator that is a membrane separator

𝑅23 SEP −→ MS separator that is a sieve separator

𝑅24 SEP −→ CRS separator that is a crystallization sepa-

rator

𝑅25 SEP −→ FSH separator that is a flash

𝑅26 MEMBRANE −→ LMEM liquid membrane separator

𝑅27 MEMBRANE −→ GMEM gas membrane separator

𝑅28 GMEM −→ MEMBRANEmark_gas TOP BCKSLSH BOTTOM gas mem/. sep. as gmem-mark, top

prod., backslash, bottom prod.

𝑅29 LMEM −→ MEMBRANEmark_liq TOP BCKSLSH BOTTOM liq. mem. sep. as lmem-mark, top

prod., backslash, bottom prod.

𝑅30 FSH −→ FSHmark TOP BCKSLSH BOTTOM flash as flash-mark, top product, back-

slash, bottom product

𝑅31 MS −→ SIEVE_SEPmark TOP BCKSLSH BOTTOM sieve sep. as ms-mark, top prod., back-

slash, bottom prod.

𝑅32 CRS −→ CRYSTALmark TOP BCKSLSH BOTTOM crystal sep. as crystal-mark, top prod.,

backslash, bottom prod.

𝑅33 DISTIL −→ DISTILmark TOP BCKSLSH BOTTOM distillation column as top product, back-

slash, bottom-product

𝑅34 REACTOR −→ REACTANTmark REACTANT BCKSLSH PRODUCTreactor as reactant-mark, reactant,

backslash, product

𝑅35 DIV −→ PRG divider that is purge

𝑅36 PRG −→ PRGmark TOP BCKSLSH BOTTOM purge as prg-mark, top product, back-

slash, bottom product

𝑅37 PA −→ RECYCLE_OUT process-atom that is recycle-outlet
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Table C.1: Developed grammar syntax rules corresponding to the text-based SFILES repre-
sentation for flowsheets.

Rule Grammar rules Meaning/explanation

𝑅38 RECYCLE −→ RECYCLE_IN PA recycle as recycle inlet followed by an-

other PA

𝑅39 RECYCLE −→ RECmark INLET recycle as rec-mark followed by inlet

stream

𝑅40 RECYCLE −→ RECmark OUTLET recycle as rec-mark followed by outlet

stream

𝑅41 RECYCLE_IN −→ RECYCLE_IN RECYCLE_IN two recycle in adjacent to each other

𝑅42 RECYCLE_IN −→ RECmark REC_STREAM_ID recycle in as rec-mark and recycle

stream id

𝑅43 RECYCLE_IN −→ RECmark STREAM recycle in as rec-mark and stream

𝑅44 RECYCLE_OUT −→ REC_STREAM_ID recycle out as recycle stream id

𝑅45 REACTANT −→ STREAM reactant stream

𝑅46 PRODUCT −→ STREAM product stream

𝑅47 TOP −→ STREAM top product stream

𝑅48 BOTTOM −→ STREAM bottom product stream

𝑅49−52 RECYCLE_STREAM_ID −→ ’1’ | ’2’ | ’3’ | ’4’ recycle stream that could be one amont

1, 2, 3, or 4

𝑅53−57 MAT −→ ’A’ | ’B’ | ’C’ | ’D’ | ’E’ material that could be one among A, B,

C, D, or E

𝑅58 BRAC1 −→ ’(’ opening parentheses

𝑅59 BRAC2 −→ ’)’ closing parentheses

𝑅60 SQBRAC1 −→ ’[’ opening square bracket; used when a

given process atom has two or more pro-

cess bonds as output

𝑅61 SQBRAC2 −→ ’]’ closing square bracket; used when a

given process atom has two or more pro-

cess bonds as output
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Table C.1: Developed grammar syntax rules corresponding to the text-based SFILES repre-
sentation for flowsheets.

Rule Grammar rules Meaning/explanation

𝑅62 BCKSLSH −→ ’/’ backslash symbol that separates re-

actants/products for reactor, or

top/bottom product for separators,

dividers

𝑅63 REACTANTmark −→ ’r’ reactant-mark for reactor

𝑅64 MEMBRANEmark_gas −→ ’gmem’ gas-membrane mark for gas membrane

separator

𝑅65 MEMBRANEmark_liq −→ ’lmem’ liq-membrane mark for liquid membrane

separator

𝑅66 SIEVE_SEP_mark −→ ’ms’ sieve-separator mark

𝑅67 CRYSTALmark −→ ’crs’ crystal-separator mark

𝑅68 FSHmark −→ ’f’ flash-mark for flash separator

𝑅69 RECmark −→ ’<’ recycle-mark for recycle process bonds

𝑅70 PRGmark −→ ’prg’ purge-mark for purge divider

𝑅71 DISTILmark −→ ’d’ distillation column-mark for represent-

ing distillation columns

𝑅72 INLETmark −→ ’i’ inlet-mark for indicating flowsheet inlet

process atom

𝑅73 OUTLETmark −→ ’o’ outlet-mark for indicating flowsheet out-

let process atom

𝑅74 EQUIPMENT −→ ABSORBER an equipment that is an absorber

𝑅75 ABSORBER −→ ABSmark STREAM BCKSLSH SOLVENT BCKSLSH STREAMabsorber with top-outlet

stream, solvent input stream, and

bottom-outlet stream; the bottom feed

stream could be inferred with simple

material balance

𝑅76 SOLVENT −→ SOLVENTEmark STREAM solvent stream for the absorber
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Table C.1: Developed grammar syntax rules corresponding to the text-based SFILES repre-
sentation for flowsheets.

Rule Grammar rules Meaning/explanation

𝑅77 ABSmark −→ ’abs’ mark for the absorber

𝑅78 SOLUTEmark −→ ’sol’ mark for the solvent stream

‘|’ separates multiple syntax rules available for the same non-terminal symbol. Also, PG here refers to

process-groups a combination of one or more process atoms (PAs) and has been introduced to enforce a

hierarchy in the grammar rules.
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Appendix D: Additional SFILES grammar trees

(a) Illustration of a process flow diagram with reactor followed by distillation

(b) Text-based SFILES representation for the process shown above

Figure D.1: Process flow diagram and text-based SFILES representation for a system with
reactor followed by a distillation column with grammar tree shown in Figure D.2
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Appendix E: Additional information extraction examples from

SUSIE

Input 1: Compound_1, IUPAC_1, and Compound_8, IUPAC_2, are proposed

starting materials for the commercial manufacture of Drug_1, as shown in Scheme

3.0-1. The drug substance, Drug_1, is manufactured as a monohydrate and is also

referred to using the reference numbers Compound_9 and Compound_10 monohy-

drate. The non-proprietary name Drug_1 can refer to the anhydrous or monohy-

drate form interchangeably. Reference to the water of hydration is retained in the

chemical information (chemical names, formulas, weight). In the CMC sections of

this document, Drug_1 refers to the monohydrate form. When referring specifically

to the anhydrous form, the text will state either Compound_10 or Drug_1 (anhy-

drous).

Input 2: The two proposed starting materials provide all the non-hydrogen atoms

that form Drug_1, except the amide oxygen atom and the water of hydration, and

therefore, are both considered significant structural fragments of the drug substance.

These starting materials are readily synthesized, have been well-characterized, and

demonstrate good stability.
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Input 3: Supporting data are provided herein to indicate that the two proposed

starting materials, compound_1 and Compound_8, are ideal candidates for the

control of impurities entering the synthetic process. The proposed starting ma-

terials enter the process with adequate purity, guided by a rigorous set of pro-

posed specifications, that ensure the drug substance does not contain significant

(greater than 0.10% ) impurities originating from the starting materials. Addition-

ally, the downstream processes required to convert these proposed starting materials

to drug substance also provide significant impurity reduction and control capability

as demonstrated through batch history data and impurity spiking studies. This

combination of factors is the basis the proposal that the two proposed starting

materials are appropriate for the commercial manufacture of Drug_1.

Input 4: The drug substance manufacturing process uses two starting materials,

compound_1 and Compound_8. It consists of three synthetic steps and employs 3

covalent bond making/breaking processes. In Step 1a, a mixture of the two starting

materials (compound_1 and Compound_8), IUPAC_2 and toluene are heated at

reflux under a partial vacuum, with water removal, to form Compound_11 by a

condensation reaction. In Step 1b, IUPAC_3 and additional IUPAC_2 are added,

nitrogen is used to reduce the oxygen level, and most of the toluene is removed by

vacuum distillation. Nitrogen is again used to reduce the oxygen level in the reac-

tion mixture, before it is heated to produce Compound_6 by a cyclocondensation

reaction. As the reaction is cooled, seed crystals may be added to aid crystallization

of Compound_6. To complete the crystallization, water is added, followed by an

aqueous solution of potassium carbonate. The product is then isolated by filtration,

washed, and dried.
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Input 5: In Step 2, aqueous sodium hydroxide is added to a heated solution of

Compound_6 in IUPAC_4 to hydrolyze the nitrile to an amide. When the reaction

is complete, the partially-cooled solution may be seeded to initiate crystallization.

The crystallization is completed by the addition of water to the warm slurry followed

by cooling. The product is then isolated by filtration, washed and dried.

In Step 3, technical-grade Compound_10 monohydrate, ethanol, which may be de-

natured with methanol, and water are heated and the resulting solution is polish

filtered. Following concentration, the solution may be seeded with Drug_1 to ini-

tiate crystallization. The temperature is reduced slightly and water is added to

the warm mixture. The slurry is then cooled to complete the crystallization. The

particle size distribution is adjusted by slurry-milling followed by thermal-cycling.

The product is isolated by filtration, washed and dried.
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